EPSANet:金字塔拆分注意力模块

本文提出了EPSANet,它基于通道注意力机制并引入多尺度思想,构建了轻量且高效的EPSA模块。该模块可作为即插即用组件提升现有CNN网络性能。实验结果显示,EPSANet在图像分类、目标检测和实例分割任务上均表现出优越性能,优于SENet、FcaNet等现有模型。
摘要由CSDN通过智能技术生成

编辑:Happy
首发:AIWalker

标题&作者团队

本文是深圳大学&西安交大在注意力机制方面的探索,在通道注意力的基础上,引入多尺度思想,构建了本文所提的即插即用EPSA模块。相比其他注意力机制(比如SENet、FcaNet等),所提EPSANet在图像分类、目标检测以及实例分割任务上均取得了显著性能提升。

Abstract

已有研究表明:将注意力模块嵌入都现有CNN中可以带来显著的性能提升。比如,知名的SENet、BAM、CBAM、ECANet、GCNet、FcaNet等注意力机制均带来了客观的性能提升。

本文提出了一种新颖的轻量且高效的注意力模块PSA,采用所提PSA替换ResNet网络Bottleneck中的 3 × 3 3\times 3 3×3卷积得到了新的模块EPSA,所得EPSA可以作为一种“即插即用”模块用于现有骨干网络并显著提升性能。由此构建的骨干网络称之为EPSANet,它可以提供更强的多尺度特征表达并服务于下游任务,比如图像分类、目标检测、实例分割等。

无需任何技巧,所提EPSANet取得了优于其他注意力模型的性能。相比SENet50,所提方案在图像分类任务上取得了1.93%的精度提升,在目标检测任务上取得2.7boxAP指标提升,在实例分割任务上取得了1.7mAP指标提升。

Method

Revisiting Channel Attention

上图给出了通道注意力的结构示意图,它包含GAP+两个全连接层,可以描述如下:
g c = 1 H × W ∑ i = 1 H ∑ j = 1 W x ( i , j ) w c = σ ( W 1 δ ( W 0 ( g c ) ) ) g_c = \frac{1}{H \times W} \sum_{i=1}^H \sum_{j=1}^W x(i,j) \\ w_c = \sigma(W_1\delta(W_0(g_c))) gc=H×W1i=1Hj=1Wx(i,j)wc=σ(W1δ(W0(gc)))

PSA Module

本文旨在构建一种更高效且有效的通道注意力机制,提出了一种新的金字塔拆分注意力模块(Pyramid Split Attention, PSA),见上图。处理流程描述如下:

  • 先,我们通过所提SPC(Split and Concat)模块构建多尺度特征;
  • 然后,通过SE方式得到通道级注意力向量以提取不同尺度特征;
  • 其次,采用Softmax对上述所得通道注意力向量进行重校正;
  • 最后,将校正后注意力向量作用于多尺度特征图并将结果作为输出。

最后所得输出具有丰富的多尺度信息。那么,SPC是个什么鬼呢?看下图。

从前面我们了解到:PSA的关键在于多尺度特征提取,即SPC模块。假设输入为X,我们先将其拆分为S部分 [ X 0 , X 1 , ⋯   , X S − 1 ] [X_0, X_1, \cdots, X_{S-1}] [X0,X1,,XS1],然后对不同部分提取不同尺度特征,最后将所提取的多尺度特征通过Concat进行拼接。上述过程可以简单描述如下:
[ X 0 , X 1 , ⋯   , X S − 1 ] = S p l i t ( X ) F i = C o n v ( K i × k i , G i ) ( X i ) , i = 0 , 1 , ⋯   , S − 1 F = C a t ( [ F 0 , F 1 , ⋯   , F S − 1 ] ) [X_0, X_1, \cdots, X_{S-1}] = Split(X) \\ F_i = Conv(K_i \times k_i, G_i)(X_i), i=0,1,\cdots, S-1 \\ F = Cat([F_0, F_1,\cdots, F_{S-1}]) [X0,X1,,XS1]=Split(X)Fi=Conv(Ki×ki,Gi)(Xi),i=0,1,,S1F=Cat([F0,F1,,FS1])
在上述特征基础上,我们对不同部分特征提取注意力权值,公式如下:
Z i = S E W e i g h t ( F i ) , i = 0 , 1 , ⋯   , S − 1 Z_i = SEWeight(F_i), i=0,1,\cdots, S-1 Zi=SEWeight(Fi),i=0,1,,S1
为更好的实现注意力信息交互并融合跨维度信息,我们将上述所得注意力向量进行拼接,即 Z = Z 0 ⊕ Z 1 ⊕ ⋯ ⊕ Z S − 1 Z=Z_0 \oplus Z_1 \oplus \cdots \oplus Z_{S-1} Z=Z0Z1ZS1.然后,我们再对所得注意力权值进行归一化,定义如下:
a t t = S o f t m a x ( Z ) att = Softmax(Z) att=Softmax(Z)
最后,我们即可得到校正后的特征: Y = F ⊙ a t t Y = F \odot att Y=Fatt

Network Design

上图给出了所提EPSA模块架构示意图,并将其与SENet、ResNet等进行了对比。EPSANet的网络结构配置信息见下表。

Experiments

Image Classification on ImageNet

上表给出了ImageNet上的性能对比,从中可以看到:

  • 相比ResNet50,EPSANet50-Small取得了2.29%精度提升,且参数量少11.7%,计算量少12.1%;
  • 相比SENet101,EPSANet50-Small取得了相当精度,二参数量节省54.2%,计算量节省53.9%;
  • 相比ResNet101,SENet101,EPSANet101-Small分别取得了1.6%和0.81%的精度提升,并分别节省12.7%与21.1%的计算资源;
  • EPSANet50-Large与EPSANet101-Large分别取得了各自领域的最佳性能。

Object Detection on MS COCO

上表给出了不同方案在COCO数据集上目标检测的性能对比,从中可以看到:

  • 所提方法取得了最佳检测性能;
  • EPSANet50-Small以更少的参数量、更低的计算量超过了SENet50;
  • 相比FcaNet,所提EPSANet50-Large取得了更高的AP指标。
  • 上述实验结果表明:EPSANet具有很好的泛化性能,可以非常容易应用到其他下游任务。

Instance Segmentation on MS COCO

上表给出了COCO数据集上实例分割的性能对比,很明显:

  • EPSANet再一次超越了其他注意力方案。
  • 相比FcaNet,EPSANet50-Large具有更高的AP指标。

全文到此结束,更多消融实验与分析建议查看原文。

推荐阅读

  1. “重参数宇宙”再添新成员:RepMLP,清华大学&旷视科技提出将重参数卷积嵌入到全连接层
  2. 新坑!谷歌提出MLP-Mixer:一种无卷积、无注意力,纯MLP构成的视觉架构
  3. CVPR2021 | 动态滤波器卷积新高度!DDF:同时解决内容不可知与计算量两大缺陷
  4. 突破置换模块计算瓶颈,MSRA开源轻量版HRNet,超越主流轻量化网络!|CVPR2021
  5. EfficientNet v2来了!更快,更小,更强!
  6. CVPR2021|“无痛涨点”的ACNet再进化,清华大学&旷视科技提出Inception类型的DBB
  7. 动态卷积超进化!通道融合替换注意力,减少75%参数量且性能显著提升 ICLR 2021
  8. Face++张祥雨&孙剑新作WeightNet,高性能涨点并将SENet与CondConv进行统一
  9. SANet|融合空域与通道注意力,南京大学提出置换注意力机制
  10. RepVGG|让你的ConVNet一卷到底,plain网络首次超过80%top1精度
  11. 通道注意力新突破!从频域角度出发,浙大提出FcaNet:仅需修改一行代码,简洁又高效
  12. HS-ResNet | 超越ResNeSt,ResNet又一改进,“分层拆分模块”
  13. 消除Aliasing!加州大学&英伟达提出深度学习下采样新思路:自适应低通滤波器层
  14. 与SENet互补提升,华为诺亚提出自注意力新机制:Weight Excitation|ECCV2020
  15. 新一代移动端模型MobileNeXt来了!打破常规,逆残差模块超强改进,精度速度双超MobileNetV2
  • 17
    点赞
  • 107
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIWalker-Happy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值