BRIA.AI开源最强AI一键抠图模型RMBG,超简上手体验

BRIA.AI团队在HuggingFace上发布了RMBG-1.4模型,一款基于ISNet的背景移除工具,适用于非商业场景,提供高质量标注数据和在线Demo。文章还提供了使用Python代码进行快速实战的教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文首发: AIWalker
欢迎关注AIWalker,近距离接触底层视觉与基础AI技术

近日,BRIA.AI团队于HuggingFace开源了一个基于ISNet背景移除模型RMBG-1.4,它可以有效对前景与背景进行分离。RMBG-1.4在精心构建的数据集上训练而来,该数据包含常规图像、电商、游戏以及广告内容,该方案达到了商业级性能,但仅限于非商业用途。关于所用到的训练数据:12000+高质量&高分辨率像素级精度手工标注。更详细的数据分布介绍请移步[RMBG-1.4]

著名的HuggingFace上已有该背景移除模型的体验Demo,见:https://huggingface.co/spaces/briaai/BRIA-RMBG-1.4,用户只需要上传图片即可体验。

当然,也有效果不那么好的,比如下面这张:

快速实战

代码下载

git clone https://huggingface.co/briaai/RMBG-1.4
cd RMBG-1.4/
pip install -r requirements.txt

代码调用示例

from skimage import io
import torch, os
from PIL import Image
from briarmbg import BriaRMBG
from utilities import preprocess_image, postprocess_image

im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"

net = BriaRMBG()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
net.to(device)

# prepare input
model_input_size = [1024,1024]
orig_im = io.imread(im_path)
orig_im_size = orig_im.shape[0:2]
image = preprocess_image(orig_im, model_input_size).to(device)

# inference 
result=net(image)

# post process
result_image = postprocess_image(result[0][0], orig_im_size)

# save result
pil_im = Image.fromarray(result_image)
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
orig_image = Image.open(im_path)
no_bg_image.paste(orig_image, mask=pil_im)
no_bg_image.save("example_image_no_bg.png")

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIWalker-Happy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值