扩展欧几里得算法

扩展欧几里得算法是为了解决这样一个问题:

给定两个非零的整数 a 和 b,求一组正整数 (x, y),使得 ax+ by = gcd(a, b) 成立,其中 gcd(a, b) 表示 a 和 b 的最大公约数。

 

由前面用到的欧几里得算法求最大公约数的方法可知,它总是把 gcd(a, b) 转化为求解 gcd(b, a%b),当 b 变为 0 的时候返回 a,此时 a 就等于gcd。也就是说欧几里得算法结束的时候变量a 中存放的是 gcd,变量 b 中存放的是 0,因此此时显然有 a*1 + b*0 = gcd(a, b) 成立,此时有x = 1, y = 0成立。

int gcd(int a, int b){
  if(b == 0) return a;
  else return gcd(b, a%b);
}

所以,不妨我们用上面的欧几里得算法的过程来计算 x 和 y。

 

当计算 gcd(a, b) 时,有 ax1 + by1 = gcd 成立;

而在下一步计算 gcd(b, a%b) 时,又有 bx2 + (a%b)y2 = gcd 成立。由此 ax1 + by1 = bx2 + (a%b)y2 成立。

又考虑到有关系 a%b = a - (a/b)*b 成立,因此 ax1 + by1 = bx2 + (a - (a/b)*b)y2 成立。

整理式子之后得到 ax1 + by1 = ay2 + b(x2 - (a/b)y2)。

因此,对比等号左右两边可以马上得到下面的推到公式:

x1 = y2

y1 = x2 - (a/b)y2

由此便可以通过 x2 和 y2 来反推 x1 和 y1 了。于是只需要到达递归边界、不断退出的过程中根据上面的公式计算 x 和 y,就可以得到一组解。代码如下:

int exGcd(int a, int b, int &x, int &y){
  if(b == 0){
    x = 1;
    y = 0;
    return a;
  }
  int g = exGcd(b, a%b, x, y);  //递归计算exGcd(b,a%b)
  int temp = x;  //存放x的数值
  x = y;
  y = temp - (a/b)*y;
  return g;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值