(补发)多模态文献阅读周记(一)——2020/06/08-2020/06/12

这篇博客是关于2020年6月第一周的多模态文献阅读报告,涉及Tensor Fusion Network在多模态情感分析中的应用,不完全时间序列数据的低秩表示学习,以及跨模态注意力机制和循环翻译方法在不规则数据上的表现。论文主要关注多模态融合、低秩张量表示、数据不完整性和跨模态注意力交互等关键问题,并在CMU-MOSI等数据集上进行了实验,证明了所提出方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Week Literature Reading Report

2020/06/08-2020/06/12 week 1

Paper 1

Tensor Fusion Network for Multimodal Sentiment Analysis

Issues that need resolving

Multimodal fusion and representation

Key insight

This paper use three-fold Cartesian product to fusion three modalities, which is called Tensor Fusion Network. This 3D tensor contains unimodal, bimodal and trimodal dynamics. Then put this tensor to a fully connected deep neural network to do prediction. Tensor not only can keep intra-modality information, but also learns inter-modality information.

The net structure

在这里插入图片描述

Dataset and experiment res

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值