本文在此2024年新出优化算法BKA基础上进行综合策略改进(具体改进方式如下所述),为了对比研究改进效果,将多策略综合改进黑翅鸢优化算法IBKA同时与B标准黑翅鸢优化算法BKA,灰狼优化算法(GWO),鲸鱼优化算法(WOA),粒子群优化算法(PSO)进行对比。在CEC23个标准函数上测试(可任意选择23种标准函数进行算法测试)。
附送:改进算法相关参考文献,IBKA黑翅鸢智能优化算法较为新颖可直接作为创新点进行论文写作。
本文采用如下4种方法综合改进蜣螂优化算法策略如下:
改进策略1:混沌映射改进策略(含多种混沌策略)
改进策略2:种群初始化精英反向
改进策略3:透镜成像反向学习
改进策略4:黄金正弦变异策略
黑翅鸢优化算法(BKA)是一种新型的元启发式算法(智能优化算法),灵感来源于黑翅鸢迁徙和捕食行为,BKA在CEC23种标准测试函数上进行了测试性能优越,目前已将其应用于分类、回归和时间序列预测等多种模型的超参数优化上,性能优越!该成果由Wang Jun等人于2024年3月发表在SCI人工智能一区顶刊《Artificial Intelligence Review》上!
运行效果和部分核心程序展示如下所示: