【2024新算法多策略综合改进】改进黑翅鸢智能优化算法IBKA与BKA-WOA-GWO-PSO算法对比研究(SCI论文必备)

本文在此2024年新出优化算法BKA基础上进行综合策略改进(具体改进方式如下所述),为了对比研究改进效果,将多策略综合改进黑翅鸢优化算法IBKA同时与B标准黑翅鸢优化算法BKA,灰狼优化算法(GWO),鲸鱼优化算法(WOA),粒子群优化算法(PSO)进行对比。在CEC23个标准函数上测试(可任意选择23种标准函数进行算法测试)。

附送:改进算法相关参考文献,IBKA黑翅鸢智能优化算法较为新颖可直接作为创新点进行论文写作。

本文采用如下4种方法综合改进蜣螂优化算法策略如下:

改进策略1:混沌映射改进策略(含多种混沌策略)

改进策略2:种群初始化精英反向

改进策略3:透镜成像反向学习

改进策略4:黄金正弦变异策略

黑翅鸢优化算法(BKA)是一种新型的元启发式算法(智能优化算法),灵感来源于黑翅鸢迁徙和捕食行为,BKA在CEC23种标准测试函数上进行了测试性能优越,目前已将其应用于分类、回归和时间序列预测等多种模型的超参数优化上,性能优越!该成果由Wang Jun等人于2024年3月发表在SCI人工智能一区顶刊《Artificial Intelligence Review》上!

图片

图片

运行效果和部分核心程序展示如下所示:

图片

图片

图片

本文采用Matlab编写代码,采用混沌映射+种群初始化精英反向+透镜成像反向学习+黄金正弦变异策略多策略综合改进黑翅鸢智能优化算法IBKA并与多种优秀算法进行对比, 注释详细易懂,可main函数一键运行。
### 改进算法种群初始化策略的研究 #### 现有研究概述 现有的算法(Black Kite Algorithm, BKA)主要借鉴了的捕食和迁徙行为来设计优化机制[^2]。然而,在实际应用中,初始种群的质量对于最终解的质量有着至关重要的影响。因此,针对BKA的种群初始化进行了多种改进尝试。 #### 随机分布均匀覆盖相结合的方法 一种常见的方法是在保持随机性的前提下增加对整个可行域空间更广泛的探索。这可以通过先利用低差异序列生成一组相对均匀散布的数据点作为初步个体位置,再加入一定比例完全随机产生的样本以引入多样性实现。这种方法有助于提高初期搜索效率并减少陷入局部最优的风险[^3]。 #### 基于问题特性的自适应调整 考虑到不同应用场景可能具备特定结构特点或约束条件,部分学者提出了依据待解决问题属性来自定义化设定初始参数范围及分布模式的想法。比如当面对连续变量优化任务时可以考虑采用正态分布或其他概率密度函数指导采样;而对于离散组合类题目则更适合运用图论概念构建网络框架辅助定位潜在优质起点[^1]。 #### 利用其他成熟技术增强性能 还有研究人员建议融合诸如遗传算法中的交叉变异操作或是差分进化里的向量差运算等经典技巧到BKA里去改善原始单纯依靠自然观察提炼出来的规则体系。这些额外组件可以在不改变原有核心逻辑的基础上进一步提升求解能力和鲁棒性[^4]。 ```python import numpy as np def initialize_population(problem_size, population_count): """ Initialize the population using a combination of low-discrepancy sequences and random sampling. :param problem_size: Dimensionality of each solution vector :param population_count: Number of individuals in the initial population :return: Initialized population matrix with shape (population_count, problem_size) """ # Generate quasi-random points via Sobol sequence for better coverage sobol_points = np.random.default_rng().choice(np.linspace(0, 1, num=problem_size * int(population_count*0.7)), size=(int(population_count*0.7), problem_size)) # Add fully randomized samples to introduce diversity rand_samples = np.random.rand(int(population_count*0.3), problem_size) # Combine both parts into one array representing full initialized poplation combined_pop = np.vstack((sobol_points, rand_samples)) return combined_pop ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值