【2024新算法多策略综合改进】改进黑翅鸢智能优化算法IBKA与BKA-WOA-GWO-PSO算法对比研究(SCI论文必备)

本文在此2024年新出优化算法BKA基础上进行综合策略改进(具体改进方式如下所述),为了对比研究改进效果,将多策略综合改进黑翅鸢优化算法IBKA同时与B标准黑翅鸢优化算法BKA,灰狼优化算法(GWO),鲸鱼优化算法(WOA),粒子群优化算法(PSO)进行对比。在CEC23个标准函数上测试(可任意选择23种标准函数进行算法测试)。

附送:改进算法相关参考文献,IBKA黑翅鸢智能优化算法较为新颖可直接作为创新点进行论文写作。

本文采用如下4种方法综合改进蜣螂优化算法策略如下:

改进策略1:混沌映射改进策略(含多种混沌策略)

改进策略2:种群初始化精英反向

改进策略3:透镜成像反向学习

改进策略4:黄金正弦变异策略

黑翅鸢优化算法(BKA)是一种新型的元启发式算法(智能优化算法),灵感来源于黑翅鸢迁徙和捕食行为,BKA在CEC23种标准测试函数上进行了测试性能优越,目前已将其应用于分类、回归和时间序列预测等多种模型的超参数优化上,性能优越!该成果由Wang Jun等人于2024年3月发表在SCI人工智能一区顶刊《Artificial Intelligence Review》上!

图片

图片

运行效果和部分核心程序展示如下所示:

图片

图片

图片

本文采用Matlab编写代码,采用混沌映射+种群初始化精英反向+透镜成像反向学习+黄金正弦变异策略多策略综合改进黑翅鸢智能优化算法IBKA并与多种优秀算法进行对比, 注释详细易懂,可main函数一键运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值