Seaborn系列目录

Python科学计算和数据分析库系列目录


Seaborn简介

Seaborn是基于matplotlib的2D绘图库。它在统计绘图方面更加方便易用,并且有自己预定义的样式。

Seaborn并非用于替代matplotlib,而是对于数据分析等工作更加方便。

Seaborn系列目录



Python科学计算和数据分析库系列目录


个人总结,部分内容进行了简单的处理和归纳,如有谬误,希望大家指出,持续修订更新中。

修订历史版本见:https://github.com/hustlei/AI_Learning_MindMap

未经允许请勿转载。

### Seaborn Iris 数据集使用方法 #### 加载内置数据集 Seaborn 提供了一种简单的方法来加载其自带的数据集,包括著名的 `iris` 数据集。通过调用 `sns.load_dataset()` 函数可以轻松实现这一点[^1]。 ```python import seaborn as sns # 加载 iris 数据集 iris = sns.load_dataset('iris') print(iris.head()) ``` 这段代码展示了如何利用 Seaborn 的功能快速访问预处理好的鸢尾花样本集合。它自动处理了网络请求以及 CSV 文件解析的工作,使得开发者能够专注于数据分析本身而不是数据准备阶段。 #### 自定义路径加载数据集 如果希望从特定位置加载自备版本的 `iris.csv` 文件,则可以通过 Pandas 库来进行操作,并确保该文件位于指定目录中,比如项目的 "data" 子文件夹里[^2]。 ```python import pandas as pd # 从本地加载 iris 数据集 custom_iris_path = 'data/iris.csv' custom_iris_data = pd.read_csv(custom_iris_path) # 验证前几行记录是否正确读取 print(custom_iris_data.head()) ``` 此方式允许用户根据实际需求调整数据源的位置或格式,在某些场景下更加灵活方便。 #### 可视化展示 一旦成功加载了所需的数据之后,就可以借助 Seaborn 强大的绘图能力对其进行探索性分析。下面是一个简单的例子,用来绘制不同种类花朵之间的特征关系散点矩阵图[^3]。 ```python import matplotlib.pyplot as plt # 创建配对网格图表 pair_plot = sns.pairplot(iris, hue='species') plt.show() ``` 上述命令将会生成一系列两两变量间的分布情况对比图,并按照物种分类着色区分每一点所属类别,有助于直观理解各属性间的关系模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hustlei

您的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值