机器学习
tripleHu
这个作者很懒,什么都没留下…
展开
-
python安装numpy和matplotlib
由于原生安装的python没有带有这几个库,故需要用户自己下载安装其中需要先安装了numpy才能安装后面两个库本文以windows10下python2.7安装这些库为例numpy1、numpy下载地址:http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy2、下载完成后将numpy-1.11.3+mkl-cp27-cp27m-win原创 2017-04-20 20:54:05 · 419 阅读 · 0 评论 -
K近邻(KNN)算法
K近邻算法用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,原创 2017-04-20 19:41:46 · 202 阅读 · 0 评论 -
决策树——选择最好的划分方法之信息熵
决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,可以高效的对未知的数据进行分类。决策数有两大优点:1)决策树模型可以读性好,具有描述性,有助于人工分析;2)效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。 训练数据如下表: 根据训练数据集的数据,构造决策树 比如新发现一种动物,通过决策树就可以判断它是否是鱼原创 2017-04-23 17:46:10 · 3092 阅读 · 0 评论 -
决策树——ID3构建决策树
在上一篇笔记中学习了使用信息熵选择最好的划分方式,本篇就要开始构建决策树了。 本文在上一篇的代码的基础扩展,先贴上代码# coding:utf-8 from math import logimport operator##创建训练数据集def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'原创 2017-04-24 17:16:15 · 1068 阅读 · 0 评论