CSP:疫苗运输

疫苗运输

原题链接
涉及如下知识点:

  1. 迪克斯特拉算法
  2. 扩展欧几里得算法

大体懂了大佬题解的思路,感觉很难。

思路

1、把每条线路看作一个顶点,线路之间有交点,则顶点之间有边;
2、用Dijkstra算法求每个顶点(线路)最早拿到疫苗的时间和站点在该线路上的编号,得到dist数组;
3、用dist数组求每条线路上每个站点最早拿到疫苗的时间,得到ans数组;
4、用已经求得最早拿到疫苗时间dist的线路t,更新其他线路p的最早拿到疫苗时间时,牵涉到扩展欧几里得算法:
参考图片

5、记D = exgcd(b, y, X, Y),扩展欧几里得算法求出的X要扩大(x - a) / D倍,才是x - a 对应的X,但是我们需要的是最小的正整数解X,所以仍需对X进行变换。我们先来看 a * x + b * y = 1,如果求出x后,x若大了,只需减去若干b,若小了,只需加上若干b,推导如下:
a * x + b * y + k * b * a - k * b * a = 1;
a * (x + k * b) + b * (y - k * a) = 1;
x + k * b 和 y - k * a 都是整数,也就是说,x 和 y不会遗漏任何解。

故,我们若要求x的最小正整数解,只需进行如下操作:
x = (x % b + b) % b

再来看看a * x + b * y = D的情况,只需将 b / = D 即可完成相同的转化。

满分代码

#include <bits/stdc++.h>

#define x first
#define y second

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;

const int N = 510;
const LL INF = 0x3f3f3f3f3f3f3f3fll;

int n, m; // 站点数n,线路数m

struct Node {
    int cid; // 线路号
    int sum; // 当前点在线路cid上距离起点的距离
    int pid; // 当前点在线路cid上的编号
};

LL len[N]; // len[i]: 线路i的长度
vector<Node> ps[N]; // 线路i上经过编号为j的点上的线路
vector<PII> line[N]; // line[i][j] = {ver, y} :线路i上编号为j的站点号为ver的点到下一个站点的距离为y
bool st[N]; // dijkstra中的判重数组
int pid[N]; // pid[i] = j : 线路i上最早拿到疫苗的点的编号为j
LL dist[N]; // dist[i] :线路i最早拿到疫苗的时间
LL ans[N]; // 站点i最早拿到疫苗的时间


// 扩展欧几里得算法
LL exgcd(LL a, LL b, LL& x, LL& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    LL r = exgcd(b, a % b, y, x);
    y -= (a / b) * x;
    return r;
}

void dijkstra() {
    // 初始化dist数组
    memset(dist, 0x3f, sizeof dist);
    for (int i = 0; i < m; ++i) {
        int d = 0;
        for (int j = 0; j < line[i].size(); ++j) {
            if (line[i][j].x == 1) { // 站点号为1
                dist[i] = d;
                pid[i] = j;
                break;
            }
            d += line[i][j].y;
        }
    }

    for (int i = 0; i < m; ++i) {
        // 选点
        int t = -1;
        for (int j = 0; j < m; ++j) {
            if (!st[j] && (t == -1 || dist[j] < dist[t])) {
                t = j;
            }
        }
        st[t] = true; // 标记

        vector<PII>& l = line[t]; // l为线路t
        LL d = dist[t]; // 线路t最早拿到疫苗的时间

        // 遍历线路t上的点
        for (int j = pid[t], k = 0; k < l.size(); j = (j + 1) % l.size(), ++k) {
            for (auto& c : ps[l[j].x]) {
                if (st[c.cid]) continue; // 非常重要
                LL a = d, b = len[t];
                LL x = c.sum, y = len[c.cid];
                LL X, Y;

                LL D = exgcd(b, y, X, Y);
                if ((x - a) % D) continue; // 不满足扩展欧几里得算法的条件
                X = (x - a) / D * X;
                y /= D;
                X = (X % y + y) % y;

                if (dist[c.cid] > a + b * X) {
                    dist[c.cid] = a + b * X;
                    pid[c.cid] = c.pid;
                }
            }
            d += l[j].y;
        }
    }
}

int main() {
    cin>>n>>m;
    for (int i = 0; i < m; ++i) {
        int cnt; // 线路i上的站点数
        cin>>cnt;
        int sum = 0;
        for (int j = 0; j < cnt; ++j) {
            int ver, t; // 站点号,到下一站的时间
            cin>>ver>>t;
            ps[ver].push_back({i, sum, j});
            line[i].push_back({ver, t});
            sum += t;
        }
        len[i] = sum;
    }

    dijkstra();

    memset(ans, 0x3f, sizeof ans);
    for (int i = 0; i < m; ++i) {
        if (dist[i] == INF) continue; // 很重要
        LL d = dist[i]; // 线路i最早拿到疫苗的时间
        for (int j = pid[i], k = 0; k < line[i].size(); j = (j + 1) % line[i].size(), ++k) {
            int ver = line[i][j].x;
            ans[ver] = min(ans[ver], d);
            d += line[i][j].y;
        }
    }

    for (int i = 2; i <= n; ++i) {
        if (ans[i] == INF) puts("inf");
        else printf("%lld\n", ans[i]);
    }
    return 0;
}

参考题解

AcWing 3415.疫苗运输
LeetCode 第 22 次 CCF CSP 认证战记

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值