疫苗运输
原题链接
涉及如下知识点:
大体懂了大佬题解的思路,感觉很难。
思路
1、把每条线路看作一个顶点,线路之间有交点,则顶点之间有边;
2、用Dijkstra算法求每个顶点(线路)最早拿到疫苗的时间和站点在该线路上的编号,得到dist数组;
3、用dist数组求每条线路上每个站点最早拿到疫苗的时间,得到ans数组;
4、用已经求得最早拿到疫苗时间dist的线路t,更新其他线路p的最早拿到疫苗时间时,牵涉到扩展欧几里得算法:
5、记D = exgcd(b, y, X, Y),扩展欧几里得算法求出的X要扩大(x - a) / D倍,才是x - a 对应的X,但是我们需要的是最小的正整数解X,所以仍需对X进行变换。我们先来看 a * x + b * y = 1,如果求出x后,x若大了,只需减去若干b,若小了,只需加上若干b,推导如下:
a * x + b * y + k * b * a - k * b * a = 1;
a * (x + k * b) + b * (y - k * a) = 1;
x + k * b 和 y - k * a 都是整数,也就是说,x 和 y不会遗漏任何解。
故,我们若要求x的最小正整数解,只需进行如下操作:
x = (x % b + b) % b
再来看看a * x + b * y = D的情况,只需将 b / = D
即可完成相同的转化。
满分代码
#include <bits/stdc++.h>
#define x first
#define y second
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int N = 510;
const LL INF = 0x3f3f3f3f3f3f3f3fll;
int n, m; // 站点数n,线路数m
struct Node {
int cid; // 线路号
int sum; // 当前点在线路cid上距离起点的距离
int pid; // 当前点在线路cid上的编号
};
LL len[N]; // len[i]: 线路i的长度
vector<Node> ps[N]; // 线路i上经过编号为j的点上的线路
vector<PII> line[N]; // line[i][j] = {ver, y} :线路i上编号为j的站点号为ver的点到下一个站点的距离为y
bool st[N]; // dijkstra中的判重数组
int pid[N]; // pid[i] = j : 线路i上最早拿到疫苗的点的编号为j
LL dist[N]; // dist[i] :线路i最早拿到疫苗的时间
LL ans[N]; // 站点i最早拿到疫苗的时间
// 扩展欧几里得算法
LL exgcd(LL a, LL b, LL& x, LL& y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
LL r = exgcd(b, a % b, y, x);
y -= (a / b) * x;
return r;
}
void dijkstra() {
// 初始化dist数组
memset(dist, 0x3f, sizeof dist);
for (int i = 0; i < m; ++i) {
int d = 0;
for (int j = 0; j < line[i].size(); ++j) {
if (line[i][j].x == 1) { // 站点号为1
dist[i] = d;
pid[i] = j;
break;
}
d += line[i][j].y;
}
}
for (int i = 0; i < m; ++i) {
// 选点
int t = -1;
for (int j = 0; j < m; ++j) {
if (!st[j] && (t == -1 || dist[j] < dist[t])) {
t = j;
}
}
st[t] = true; // 标记
vector<PII>& l = line[t]; // l为线路t
LL d = dist[t]; // 线路t最早拿到疫苗的时间
// 遍历线路t上的点
for (int j = pid[t], k = 0; k < l.size(); j = (j + 1) % l.size(), ++k) {
for (auto& c : ps[l[j].x]) {
if (st[c.cid]) continue; // 非常重要
LL a = d, b = len[t];
LL x = c.sum, y = len[c.cid];
LL X, Y;
LL D = exgcd(b, y, X, Y);
if ((x - a) % D) continue; // 不满足扩展欧几里得算法的条件
X = (x - a) / D * X;
y /= D;
X = (X % y + y) % y;
if (dist[c.cid] > a + b * X) {
dist[c.cid] = a + b * X;
pid[c.cid] = c.pid;
}
}
d += l[j].y;
}
}
}
int main() {
cin>>n>>m;
for (int i = 0; i < m; ++i) {
int cnt; // 线路i上的站点数
cin>>cnt;
int sum = 0;
for (int j = 0; j < cnt; ++j) {
int ver, t; // 站点号,到下一站的时间
cin>>ver>>t;
ps[ver].push_back({i, sum, j});
line[i].push_back({ver, t});
sum += t;
}
len[i] = sum;
}
dijkstra();
memset(ans, 0x3f, sizeof ans);
for (int i = 0; i < m; ++i) {
if (dist[i] == INF) continue; // 很重要
LL d = dist[i]; // 线路i最早拿到疫苗的时间
for (int j = pid[i], k = 0; k < line[i].size(); j = (j + 1) % line[i].size(), ++k) {
int ver = line[i][j].x;
ans[ver] = min(ans[ver], d);
d += line[i][j].y;
}
}
for (int i = 2; i <= n; ++i) {
if (ans[i] == INF) puts("inf");
else printf("%lld\n", ans[i]);
}
return 0;
}