离散数学实验一

实验题目:可简单图化、连通图、欧拉图和哈密顿图的判断

实验目的:

  1. 掌握可简单图化的定义及判断方法;
  2. 掌握连通图、欧拉图的判断方法;
  3. 掌握欧拉回路的搜索方法;
  4. 了解欧拉图的实际应用。

实验要求:

  1. 给定一非负整数序列(例如:(4,2,2,2,2))。
  2. 判断此非负整数序列是否是可图化的,是否是可简单图化的。
  3. 如果是可简单图化的,根据Havel定理过程求出对应的简单图,并输出此图。
  4. 判断此简单图是否是连通的。
  5. 如果是连通图,判断此图是否是欧拉图。如果是欧拉图,请输出一条欧拉回路(输出形式如:v2->v1->v5->v3->v4->v5->v2)。

相关知识回顾

可简单图化的判断

方式一:
Havel定理
方式二:
方式二
上面的两个定理都是充分必要条件。

欧拉回路(Euler tour/circuit)

即经过图中所有边的简单回路

思路

  1. 是否可简单图化,利用顶点度数之和为偶数 和 顶点度数位于 0 到 n - 1 之间这两个条件。其中第一个条件是可图化的判定条件。我用上面的第二个充分必要条件判断是否可简单图化,利用Havel定理由度数列得到邻接矩阵。最初求邻接矩阵时遇到了一个Bug,对于 4 4 4 2 2 2这个测试用例,无法自底向上推出相邻矩阵,我觉得原因是顶点的序号在Havel定理的过程中被我打乱了。如果每次都从头开始寻找可以连接的顶点,中间会卡在 4 4 2 2 2那里无法加边,就是说会空出一个孤立顶点和两条边无法加入。所以我把从头遍历改为循环遍历,类似操作系统中首次适应算法改为循环首次适应算法。
  2. 是否为欧拉图,无向图若是欧拉图,每个顶点的度数都是偶数;
  3. 是否连通,从一个顶点出发,若是能够遍历所有的顶点,就是连通的;
  4. 求欧拉回路,从一个顶点出发,每次加入一条没有走过的路径,不能出现环,如果无路可走时所有边都已经走过了并且回到了最初的起点,说明这是一条正确的欧拉回路。

实现代码

/*
1、给定一非负整数序列(例如:(4,2,2,2,2))。
2、判断此非负整数序列是否是可图化的,是否是可简单图化的。
使用无向相邻矩阵表示该简单图
3、如果是可简单图化的,根据Havel定理过程求出对应的简单图,并输出此图。
4、判断此简单图是否是连通的。
5、如果是连通图,判断此图是否是欧拉图。如果是欧拉图,请输出一条欧拉回路(输出形式如:v2->v1->v5->v3->v4->v5->v2)。
*/
#include <iostream>
#include <bits/stdc++.h>

using namespace std;
int a[11] = {0}; // 存储度数列
int n = 0; // 顶点个数
int graph[11][11]; // 用于存储简单图的邻接矩阵
int visited[11];
int used[11][11]; // 求欧拉回路时是否已经走过
stack<int> path; // 存储欧拉回路
int m = 0; // 边的数量
int curEdge = 0;

bool cmp(int t1, int t2)
{
    return t1 >= t2;
}

// 判断是否可图化和可简单图化,可图化返回1,可简单图化返回2,不可图化返回0
int isGraphic()
{
    int sum = 0;
    for (int i = 1; i <= n; ++i)
    {
        if (a[i] < 0)   // 负数不可图化
        {
            return 0;
        }
        sum += a[i];
    }
    if (sum % 2 == 0)   // 可图化
    {
        if (n - 1 >= a[1] && 0 <= a[n])   // 可简单图化的第二个判断
        {
            int left = 0;
            int right = 0;
            int flag = true;
            for (int r = 1; r <= n - 1; ++r)
            {
                left += a[r];
                right = r * (r - 1);
                for (int j = r + 1; j <= n; ++j)
                {
                    right += min(r, a[j]);
                }
                if (left > right)
                {
                    flag = false;
                    break;
                }
            }
            if (flag == true)
            {
                return 2;
            }
            else
            {
                return 1;
            }
        }
        else   // 不可简单图化,返回1
        {
            return 1;
        }
    }
    else   // 不可图化,返回0
    {
        return 0;
    }
}

// 用Havel定理判断邻接矩阵,自顶向下
void isGraphicHavel(int c[11], int len)  // 传入度数列c[11],以及顶点个数len,
{
    int b[11] = {0};
    int j = 1;
    for (int i = 2; i <= c[1] + 1; ++i)
    {
        b[j++] = c[i] - 1;
    }
    for (int i = c[1] + 2; i <= len; ++i)
    {
        b[j++] = c[i];
    }
    sort(b + 1, b + 1 + len - 1, cmp); // 降序排序
//    cout << "c[i]: " << endl;
//    for (int i = 1; i <= len; ++i)
//    {
//        cout << c[i] << " ";
//    }
//    cout << endl;
//    cout << "b[i]: " << endl;
//    for (int i = 1; i <= len - 1; ++i)
//    {
//        cout << b[i] << " ";
//    }
//    cout << endl;
    int flag = true; // 判断是否到最底层,即全部为孤立点
    for (int i = 1; i <= len - 1; ++i)
    {
        if (b[i] != 0)
        {
            flag = false;
            break;
        }
    }

    if (!flag) // 继续往下求一层
    {
        isGraphicHavel(b, len - 1);
    }
    int temp[11];
    copy(c, c + 11, temp); // c的临时数组,防止影响上一层
    // 对底层度数列b[11]的相邻矩阵添加本层c[11]新的顶点和边
    // 这段代码在测试4 4 4 2 2 2这个样例时无法正常运行,因为在4 4 2 2 2时无法向上变成4 4 4 2 2 2
    // ,最后会空出一个孤立点无法加边,因为不能有平行边
    // 将首次适应算法改为循环首次或许更好
    int start = 1;
    for (int i = 1; i <= len; ++i)
    {
        while(temp[i] > b[i])   // 需要添加新的边,需要改变两个值
        {
            int num = 0;
            for (int j = start; num < len && temp[i] > b[i]; j = (j == len) ? 1 : j + 1)
            {
                num++;
                if (i != j && graph[i][j] != 1){   // 不能有环和平行边
                    if (temp[j] > b[j])   // 该顶点也需要新加一条边
                    {
                        graph[i][j] = 1;
                        graph[j][i] = 1;
                        temp[i]--;
                        temp[j]--;
                        start = (j == len) ? 1 : j + 1; // 指针指向下一个点而不是第一个点
                    }
                }
            }
        }
    }
//    cout << "邻接矩阵:" << endl;
//    for (int i = 1; i <= n; ++i)
//    {
//        for (int j = 1; j <= n; ++j)
//        {
//            cout << graph[i][j] << " ";
//        }
//        cout << endl;
//    }
}

// 判断是否是欧拉图,是返回1,不是返回0
int isEuler()
{
    // 如果是欧拉图,所有顶点度数为偶数
    for (int i = 1; i <= n; ++i)
    {
        if (a[i] % 2 != 0)
        {
            return 0;
        }
    }
    return 1;
}

// dfs遍历二位数组中所有的点
void dfs(int t)
{
    for (int i = 1; i <= n; ++i)
    {
        if (visited[i] == 0 && graph[t][i] == 1)   // i没有访问过,顶点t和i之间有边
        {
            visited[i] = 1;
            dfs(i);
        }
    }
}

// 根据邻接矩阵判断是否是连通图
bool isConnected()
{
    // 先排除有孤立点的
    if (n == 1)
    {
        return false;
    }
    for (int i = 1; i <= n; ++i)
    {
        if (a[i] == 0)
        {
            return false;
        }
    }
    // 从v1开始搜索
    visited[1] = 1;
    dfs(1);
    for (int i = 1; i <= n; ++i)
    {
        if (visited[i] == 0) // 有顶点没有访问到
        {
            return false;
        }
    }
    return true;
}

bool EulerCircuit(int v)   // 返回值代表能否走通
{
    // 先计算边数,用栈存储已经经过的顶点,如果没有走完就无路可走,或者回不到起点了,就弹出栈顶的顶点
    // 对于每一个顶点,利用邻接矩阵,一次尝试每个邻接的顶点
    int flag = false; // 能否走通的标志
    for (int i = 1; i <= n && !flag; ++i)
    {
        if (graph[v][i] == 1 && used[v][i] == 0)   // 没走过的路
        {
            used[v][i] = 1; // 标记已经走过了
            used[i][v] = 1;
            path.push(i);
            curEdge++;
            flag = true;
            if (!EulerCircuit(i)) // 不能继续走下去
            {
                flag = false;
                used[v][i] = 0; // 标记已经走过了
                used[i][v] = 0;
                path.pop();
                curEdge--;
            }
        }
    }
    if (!flag)   // 已经无路可走了
    {
        if (v == 1 && curEdge == m)   // 回到了起点并且边都走遍了
        {
            return true;
        }
        else   // 上次走的不对
        {
            return false;
        }
    }
    else
    {
        return true;
    }
}

int main()
{
    while (true)
    {
        memset(graph, 0, sizeof(graph));
        memset(a, 0, sizeof(a));
        memset(visited, 0, sizeof(visited));
        memset(used, 0, sizeof(used));
        m = 0;
        curEdge = 0;
        cout << "请输入顶点个数:" << endl;
        cin >> n; // 输入顶点个数
        cout << "请输入度数列,降序输入,以空格作为间隔:" << endl;
        for (int i = 1; i <= n; ++i)   // 输入度数列,降序输入,第一个位置不存数据
        {
            cin >> a[i];
        }
        int t1 = isGraphic();
        if (t1 == 0)
        {
            cout << "不可图化" << endl;
        }
        else if (t1 == 1)
        {
            cout << "可图化" << endl;
        }
        else
        {
            cout << "可简单图化" << endl;
            isGraphicHavel(a, n); // 根据Havel定理求简单图的邻接矩阵
            cout << "邻接矩阵:" << endl;
            for (int i = 1; i <= n; ++i)
            {
                for (int j = 1; j <= n; ++j)
                {
                    cout << graph[i][j] << " ";
                }
                cout << endl;
            }
            // 判断是否连通
            if (isConnected())
            {
                cout << "连通图" << endl;
                if(isEuler())
                {
                    cout << "欧拉图" << endl;
                    // 利用握手定理求边数
                    for (int i = 1; i <= n; ++i)
                    {
                        m += a[i];
                    }
                    m = m / 2;
                    path.push(1); // 先从v1开始
                    EulerCircuit(1);
                    cout << path.top();
                    path.pop();
                    while(!path.empty())
                    {
                        cout << "->" << path.top();
                        path.pop();
                    }
                    cout << endl;
                }
                else
                {
                    cout << "非欧拉图" << endl;
                }
            }
            else
            {
                cout << "非连通图" << endl;
            }
        }


    }
    return 0;
}

  • 7
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值