[剪枝]Channel Pruning for Accelerating Very Deep Neural Networks

本文介绍了ICCV2017上的一篇论文,研究了通道裁剪(Channel Pruning)技术,用于加速非常深的神经网络。通过优化通道选择参数和权重,实现模型压缩,其训练方法类似于稀疏编码的过程,同时考虑了正则化项以保持模型的稀疏性。
摘要由CSDN通过智能技术生成

[ICCV2017] Channel Pruning for Accelerating Very Deep Neural Networks

序言

最近在系统学习DL的相关理论知识,猛然看到无监督学习中关于“稀疏编码”的内容回想yihui-he的这篇通道裁剪方法可能其灵感就来源于这里(注:可能就照搬)。

训练方法

先上paper中的公式
arg ⁡ min ⁡ β , W 1 2 N ∥ Y − ∑ i = 1 c β i X i W i ⊤ ∥ F 2 + λ ∥ β ∥ 1  subject to  ∥ β ∥ 0 ≤ c ′ , ∀ i ∥ W i ∥ F = 1 \begin{array}{l}{\underset{\boldsymbol{\beta}, \mathrm{W}}{\arg \min } \frac{1}{2 N}\left\|\mathrm{Y}-\sum_{i=1}^{c} \beta_{i} \mathrm{X}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}^{\top}\right\|_{F}^{2}+\lambda\|\boldsymbol{\beta}\|_{1}} \\ {\text { subject to }\|\beta\|_{0} \leq c^{\prime}, \forall i\left\|\mathrm{W}_{\mathrm{i}}\right\|_{F}=1}\end{array} β,Wargmin2N1Yi=1cβiXiWiF2+λβ1 subject to β

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值