python机器学习(四)线性代数回顾、多元线性回归、多项式回归、标准方程法求解、线性回归案例

本文回顾了线性代数的基本概念,包括矩阵、向量及其运算,如标量与矩阵的运算、矩阵与矩阵的乘法。介绍了多元线性回归模型,以及如何使用梯度下降法和标准方程法求解最优参数。同时探讨了多项式回归在处理非线性关系中的应用。
摘要由CSDN通过智能技术生成

回顾线性代数

矩阵

矩阵可以理解为二维数组的另一种表现形式。A矩阵为三行两列的矩阵,B矩阵为两行三列的矩阵,可以通过下标来获取矩阵的元素,下标默认都是从0开始的。 A i j : A_{ij}: Aij:表示第 i i i行,第 j j j列的元素。
在这里插入图片描述

向量

向量是特殊的矩阵,只有1列的矩阵,C是4行1列的向量。
在这里插入图片描述

矩阵与标量运算

标量与矩阵里的每一个元素进行运算,也可以想象成利用广播机制,把标量看成与矩阵同形状且每个元素都为标量的矩阵,对应位置进行运算。
在这里插入图片描述
矩阵与标量之间的运算是将每个元素都与标量进行运算。

矩阵与向量运算

在这里插入图片描述
n n n m m m列的矩阵乘以 m m m行1列的向量,得到 n n n行1列的向量。
例题:
比如房子的大小影响房价的高低,大小作为特征数据。
某特征数据: [ 1 2 3 ] \begin{bmatrix} 1\\ 2\\3\end{bmatrix} 123 ,线性关系为: h ( x ) = 2 x + 1 h(x)=2x+1 h(x)=2x+1,如何使用线性代数的知识表示 h ( x ) h(x) h(x) x x x之间的关系?
构建特征矩阵,添加系数全为1的1列,然后构建参数向量,1对应 θ 0 θ_0 θ0,2对应 θ 1 θ_1 θ1。x为特征数据,样本数据有 m m m个,此时 m = 3 m=3 m=3,分别对应 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3,保证截距没有其他系数干扰
在这里插入图片描述

矩阵与矩阵运算

对应位置进行运算。矩阵与向量不能直接进行相加运算。
在这里插入图片描述
矩阵与矩阵之间按位运算,并且形状要保持一致,否则不可运算。
3 ∗ 2 3*2 32的矩阵与 2 ∗ 3 2*3 23的矩阵进行相乘运算,可以把后面的 2 ∗ 3 2*3 23的矩阵拆成3个向量进行计算,得到的是 3 ∗ 3 3*3 33的矩阵。
在这里插入图片描述
n n n m m m列的矩阵乘以 m m m n n n列的矩阵,得到 n n n n n n列的矩阵。
例题:
某特征数据: [ 1 2 3 ] \begin{bmatrix} 1\\ 2\\3\end{bmatrix} 123 ,线性关系为: h ( x ) = 2 x + 1 h(x)=2x+1 h(x)=2x+1 h ( x ) = 3 x + 2 h(x)=3x+2 h(x)=3x+2,如何使用线性代数的知识表示 h ( x ) h(x) h(x) x x x之间的关系?
在这里插入图片描述
有多个 h ( x ) h(x) h(x)表现形式,把第一个线方程式中的1对应 θ 0 θ_0 θ0,2对应 θ 1 θ_1 θ1,第二个方程式中的2对应 θ 0 ′ θ_0' θ0,3对应 θ 1 ′ θ_1' θ1,多个方程式依次往后摆放。

单位矩阵

在自然数中,1乘以任何数等于任何数乘以1,等于任何数本身。单位矩阵对角线元素为1,其他元素全部为0,行列相同,也为方阵。
I = [ 1 0 0 0 1 0 0 0 1 ] I=\begin{bmatrix} 1&0&0\\ 0&1&0\\0&0&1\end{bmatrix} I= 100010001 A ∗ I = I ∗ A = A A*I=I*A=A AI=IA=A
m ∗ m m*m mm单位矩阵乘以 m ∗ n m*n mn的矩阵,都为 m ∗ n m*n mn的矩阵,矩阵与单位矩阵相乘满足交换律,其他矩阵的计算并不满足交换律。

转置矩阵

把矩阵的行与列进行交换。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值