MapReduce知识点(一)——MapReduce概述与编程模型

MapReduce概述

  • 源自于Google 2004年的MapReduce论文
  • Hadoop MapReduce是Google MapReduce的克隆版
  • MapReduce的优点:海量数据离线处理 & 易开发 & 易运行
  • MapReduce缺点:不能进行实时流式计算

 

MapReduce就是将一个作业在多个节点上运行

多个节点之间,如何通信,如何保障高可靠,如果我们自己来实现是很繁琐的

所以说这个框加为我们提供了底层很好的封装,在开发过程中根本不需要关注分布式底层的这些东西,只需要用它的API来实现就ok了

 

MapReduce编程模型

以WordCount词频统计为例

采用并行方式

splitting是把文件拆开

reducing是归并


MapReduce会把作业拆分成Map阶段和Reduce阶段

MapReduce执行步骤

  • 准备map处理的输入数据
  • Mapper处理
  • Shuffle
  • Reduce处理
  • 结果输出

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值