神经网络调参实战(一)—— 训练更多次数 & finetune

目标:将vggnet训练CIFAR-10数据集的精确度从70%提升至85%

现在的vggnet

import tensorflow as tf
import os
import pickle
import numpy as np

CIFAR_DIR = "dataset/cifar-10-batches-py"
print(os.listdir(CIFAR_DIR))


def load_data(filename):
    """read data from data file."""
    with open(filename, 'rb') as f:
        data = pickle.load(f, encoding='bytes')
        return data[b'data'], data[b'labels']

# tensorflow.Dataset.
class CifarData:
    def __init__(self, filenames, need_shuffle):
        all_data = []
        all_labels = []
        for filename in filenames:
            data, labels = load_data(filename)
            all_data.append(data)
            all_labels.append(labels)
        self._data = np.vstack(all_data)
        self._data = self._data / 127.5 - 1
        self._labels = np.hstack(all_labels)
        print(self._data.shape)
        print(self._labels.shape)
        
        self._num_examples = self._data.shape[0]
        self._need_shuffle = need_shuffle
        self._indicator = 0
        if self._need_shuffle:
            self._shuffle_data()
            
    def _shuffle_data(self):
        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]
        p = np.random.permutation(self._num_examples)
        self._data = self._data[p]
        self._labels = self._labels[p]
    
    def next_batch(self, batch_size):
        """return batch_size examples as a batch."""
        end_indicator = self._indicator + batch_size
        if end_indicator > self._num_examples:
            if self._need_shuffle:
                self._shuffle_data()
                self._indicator = 0
                end_indicator = batch_size
            else:
                raise Exception("have no more examples")
        if end_indicator > self._num_examples:
            raise Exception("batch size is larger than all examples")
        batch_data = self._data[self._indicator: end_indicator]
        batch_labels = self._labels[self._indicator: end_indicator]
        self._indicator = end_indicator
        return batch_data, batch_labels

train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]

train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)



x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# [None], eg: [0,5,6,3]
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 32*32
x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])

# conv1: 神经元图, feature_map, 输出图像
conv1_1 = tf.layers.conv2d(x_image,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_2')

# 16 * 16
pooling1 = tf.layers.max_pooling2d(conv1_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool1')


conv2_1 = tf.layers.conv2d(pooling1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_2')
# 8 * 8
pooling2 = tf.layers.max_pooling2d(conv2_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool2')

conv3_1 = tf.layers.conv2d(pooling2,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_2')
# 4 * 4 * 32
pooling3 = tf.layers.max_pooling2d(conv3_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool3')
# [None, 4 * 4 * 32]
flatten = tf.layers.flatten(pooling3)
y_ = tf.layers.dense(flatten, 10)

loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_ -> sofmax
# y -> one_hot
# loss = ylogy_

# indices
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))

with tf.name_scope('train_op'):
    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)





init = tf.global_variables_initializer()
batch_size = 20
train_steps = 10000
test_steps = 100

# train 10k: 73.4%
with tf.Session() as sess:
    sess.run(init)
    for i in range(train_steps):
        batch_data, batch_labels = train_data.next_batch(batch_size)
        loss_val, acc_val, _ = sess.run(
            [loss, accuracy, train_op],
            feed_dict={
                x: batch_data,
                y: batch_labels})
        if (i+1) % 100 == 0:
            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' 
                  % (i+1, loss_val, acc_val))
        if (i+1) % 1000 == 0:
            test_data = CifarData(test_filenames, False)
            all_test_acc_val = []
            for j in range(test_steps):
                test_batch_data, test_batch_labels \
                    = test_data.next_batch(batch_size)
                test_acc_val = sess.run(
                    [accuracy],
                    feed_dict = {
                        x: test_batch_data, 
                        y: test_batch_labels
                    })
                all_test_acc_val.append(test_acc_val)
            test_acc = np.mean(all_test_acc_val)
            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))

训练10k次,accurancy在70%左右

1、训练更多次数

当训练100k次的时候,准确率会达到78%

2、fine-tune实战

不使用随机初始化来初始化参数,而是使用之前已经train好的模型来做初始化

步骤:

①保存模型

②恢复模型 restore models checkpoint (也就是断点恢复)

③keep some layers fixed   冻结指定层

   finetune是保存底层的参数值不变,只改变上层的参数值

import tensorflow as tf
import os
import pickle
import numpy as np

CIFAR_DIR = "dataset/cifar-10-batches-py"
print(os.listdir(CIFAR_DIR))


def load_data(filename):
    """read data from data file."""
    with open(filename, 'rb') as f:
        data = pickle.load(f, encoding='bytes')
        return data[b'data'], data[b'labels']

# tensorflow.Dataset.
class CifarData:
    def __init__(self, filenames, need_shuffle):
        all_data = []
        all_labels = []
        for filename in filenames:
            data, labels = load_data(filename)
            all_data.append(data)
            all_labels.append(labels)
        self._data = np.vstack(all_data)
        self._data = self._data / 127.5 - 1
        self._labels = np.hstack(all_labels)
        print(self._data.shape)
        print(self._labels.shape)
        
        self._num_examples = self._data.shape[0]
        self._need_shuffle = need_shuffle
        self._indicator = 0
        if self._need_shuffle:
            self._shuffle_data()
            
    def _shuffle_data(self):
        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]
        p = np.random.permutation(self._num_examples)
        self._data = self._data[p]
        self._labels = self._labels[p]
    
    def next_batch(self, batch_size):
        """return batch_size examples as a batch."""
        end_indicator = self._indicator + batch_size
        if end_indicator > self._num_examples:
            if self._need_shuffle:
                self._shuffle_data()
                self._indicator = 0
                end_indicator = batch_size
            else:
                raise Exception("have no more examples")
        if end_indicator > self._num_examples:
            raise Exception("batch size is larger than all examples")
        batch_data = self._data[self._indicator: end_indicator]
        batch_labels = self._labels[self._indicator: end_indicator]
        self._indicator = end_indicator
        return batch_data, batch_labels

train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]

train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)



x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# [None], eg: [0,5,6,3]
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 32*32
x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])

# conv1: 神经元图, feature_map, 输出图像
conv1_1 = tf.layers.conv2d(x_image,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_2')

# 16 * 16
pooling1 = tf.layers.max_pooling2d(conv1_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool1')


conv2_1 = tf.layers.conv2d(pooling1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_2')
# 8 * 8
pooling2 = tf.layers.max_pooling2d(conv2_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool2')

conv3_1 = tf.layers.conv2d(pooling2,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_2')
# 4 * 4 * 32
pooling3 = tf.layers.max_pooling2d(conv3_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool3')
# [None, 4 * 4 * 32]
flatten = tf.layers.flatten(pooling3)
y_ = tf.layers.dense(flatten, 10)

loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_ -> sofmax
# y -> one_hot
# loss = ylogy_

# indices
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))

with tf.name_scope('train_op'):
    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)

#name是指定命名空间,为了防止冲突
def variable_summary(var,name):
    with tf.name_scope(name):
        mean = tf.reduce_mean(var)#均值
        with tf.name_scope('stdddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
        tf.summary.scalar('mean',mean)
        tf.summary.scalar('stddev',stddev)
        tf.summary.scalar('min',tf.reduce_min(var))
        tf.summary.scalar('max',tf.reduce_max(var))
        tf.summary.histogram('histogram',var)#直方图

with tf.name_scope('summary'):
    variable_summary(conv1_1, 'conv1_1')
    variable_summary(conv1_2, 'conv1_2')
    variable_summary(conv2_1, 'conv2_1')
    variable_summary(conv2_2, 'conv2_2')
    variable_summary(conv3_1, 'conv3_1')
    variable_summary(conv3_2, 'conv3_2')
    #后面的merge_all会把我们写的这些都汇总起来

loss_summary = tf.summary.scalar('loss',loss)
accuracy_summary = tf.summary.scalar('accuracy',accuracy)

#x_image在程序中被归一化成了(-1,1)的值,但是tf.summary.image用的图是0-255之间,是像素值
#如果直接用的话会出问题,所以要先逆归一化一下
source_image = (x_image + 1)*127.5
inputs_summary = tf.summary.image('inputs_summary', source_image)

merged_summary = tf.summary.merge_all()
merged_summary_test = tf.summary.merge([loss_summary, accuracy_summary])


LOG_DIR = '.'
run_label = 'run_vgg_tensorboard'
run_dir = os.path.join(LOG_DIR, run_label)
if not os.path.exists(run_dir):
    os.mkdir(run_dir)
train_log_dir = os.path.join(run_dir,'train')
test_log_dir = os.path.join(run_dir,'test')
if not os.path.exists(train_log_dir):
    os.mkdir(train_log_dir)


#将模型保存在文件中
model_dir = os.path.join(run_dir,'model')
if not os.path.exists(model_dir):
    os.mkdir(model_dir)
#saver就是得到的一个文件句柄,可以帮我们把tensorflow训练过程中的某个快照(包含了所有参数和状态)
#给保存到文件中
saver = tf.train.Saver()


init = tf.global_variables_initializer()
batch_size = 20
train_steps = 10000
test_steps = 100

output_summary_every_steps = 100
output_model_every_steps = 100
# train 10k: 73.4%
with tf.Session() as sess:
    sess.run(init)

    #训练集和测试集都分别进行输出,建立2个writer
    train_writer = tf.summary.FileWriter(train_log_dir, sess.graph) 
    test_writer = tf.summary.FileWriter(test_log_dir)

    fixed_test_batch_data, fixed_test_batch_labels = test_data.next_batch(batch_size)
    for i in range(train_steps):
        batch_data, batch_labels = train_data.next_batch(batch_size)
        eval_ops = [loss,accuracy,train_op]
        shoud_output_summary = ((i+1)%output_summary_every_steps == 0)
        if shoud_output_summary:
            eval_ops.append(merged_summary)

        eval_ops_results = sess.run(
            eval_ops,
            feed_dict={
                x: batch_data,
                y: batch_labels})
        loss_val, acc_val = eval_ops_results[0:2]
        if shoud_output_summary:
            train_summary_str = eval_ops_results[-1]
            train_writer.add_summary(train_summary_str,i+1)
            test_summary_str = sess.run([merged_summary_test],
                                        feed_dict={
                                            x:fixed_test_batch_data,
                                            y:fixed_test_batch_labels,
                                        })[0]
            test_writer.add_summary(test_summary_str,i+1)

        if (i+1) % 100 == 0:
            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' 
                  % (i+1, loss_val, acc_val))
        if (i+1) % 1000 == 0:
            test_data = CifarData(test_filenames, False)
            all_test_acc_val = []
            for j in range(test_steps):
                test_batch_data, test_batch_labels \
                    = test_data.next_batch(batch_size)
                test_acc_val = sess.run(
                    [accuracy],
                    feed_dict = {
                        x: test_batch_data, 
                        y: test_batch_labels
                    })
                all_test_acc_val.append(test_acc_val)
            test_acc = np.mean(all_test_acc_val)
            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))
        if (i+1) % output_model_every_steps == 0:
            saver.save(sess, os.path.join(model_dir,'ckp-%05d' %(i+1)))
            print('model saved to ckp-%05d' %  (i+1))

ckp是checkpoint的简称

我们让模型停在第6000次训练,acc大概在65%-70%

tensorflow会自动保存最近的5个模型,把先前的给删掉

  • data中存储的是参数的数据
  • index中存储的是索引信息
  • meta中存储的是元信息

下面来看如何去恢复模型

运行后可以看到,一上来模型的accurancy就很高,这就是使用了前面模型训练的结果

第三步,keep some layers fixed 冻结指定层

在模型的计算图里面实现

trainable默认是True,如果设为False,那么这一层layer里面的参数就不参与训练

pytorch中就是 requires_grad=False

我们先把前两层给设成False

运行仍然是可以正常运行的

import tensorflow as tf
import os
import pickle
import numpy as np

CIFAR_DIR = "dataset/cifar-10-batches-py"
print(os.listdir(CIFAR_DIR))


def load_data(filename):
    """read data from data file."""
    with open(filename, 'rb') as f:
        data = pickle.load(f, encoding='bytes')
        return data[b'data'], data[b'labels']

# tensorflow.Dataset.
class CifarData:
    def __init__(self, filenames, need_shuffle):
        all_data = []
        all_labels = []
        for filename in filenames:
            data, labels = load_data(filename)
            all_data.append(data)
            all_labels.append(labels)
        self._data = np.vstack(all_data)
        self._data = self._data / 127.5 - 1
        self._labels = np.hstack(all_labels)
        print(self._data.shape)
        print(self._labels.shape)
        
        self._num_examples = self._data.shape[0]
        self._need_shuffle = need_shuffle
        self._indicator = 0
        if self._need_shuffle:
            self._shuffle_data()
            
    def _shuffle_data(self):
        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]
        p = np.random.permutation(self._num_examples)
        self._data = self._data[p]
        self._labels = self._labels[p]
    
    def next_batch(self, batch_size):
        """return batch_size examples as a batch."""
        end_indicator = self._indicator + batch_size
        if end_indicator > self._num_examples:
            if self._need_shuffle:
                self._shuffle_data()
                self._indicator = 0
                end_indicator = batch_size
            else:
                raise Exception("have no more examples")
        if end_indicator > self._num_examples:
            raise Exception("batch size is larger than all examples")
        batch_data = self._data[self._indicator: end_indicator]
        batch_labels = self._labels[self._indicator: end_indicator]
        self._indicator = end_indicator
        return batch_data, batch_labels

train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]

train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)



x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# [None], eg: [0,5,6,3]
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 32*32
x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])

# conv1: 神经元图, feature_map, 输出图像
conv1_1 = tf.layers.conv2d(x_image,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           trainable=False,
                           name = 'conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           trainable=False,
                           name = 'conv1_2')

# 16 * 16
pooling1 = tf.layers.max_pooling2d(conv1_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool1')


conv2_1 = tf.layers.conv2d(pooling1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           trainable=False,
                           name = 'conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           trainable=False,
                           name = 'conv2_2')
# 8 * 8
pooling2 = tf.layers.max_pooling2d(conv2_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool2')

conv3_1 = tf.layers.conv2d(pooling2,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_2')
# 4 * 4 * 32
pooling3 = tf.layers.max_pooling2d(conv3_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool3')
# [None, 4 * 4 * 32]
flatten = tf.layers.flatten(pooling3)
y_ = tf.layers.dense(flatten, 10)

loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_ -> sofmax
# y -> one_hot
# loss = ylogy_

# indices
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))

with tf.name_scope('train_op'):
    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)

#name是指定命名空间,为了防止冲突
def variable_summary(var,name):
    with tf.name_scope(name):
        mean = tf.reduce_mean(var)#均值
        with tf.name_scope('stdddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
        tf.summary.scalar('mean',mean)
        tf.summary.scalar('stddev',stddev)
        tf.summary.scalar('min',tf.reduce_min(var))
        tf.summary.scalar('max',tf.reduce_max(var))
        tf.summary.histogram('histogram',var)#直方图

with tf.name_scope('summary'):
    variable_summary(conv1_1, 'conv1_1')
    variable_summary(conv1_2, 'conv1_2')
    variable_summary(conv2_1, 'conv2_1')
    variable_summary(conv2_2, 'conv2_2')
    variable_summary(conv3_1, 'conv3_1')
    variable_summary(conv3_2, 'conv3_2')
    #后面的merge_all会把我们写的这些都汇总起来

loss_summary = tf.summary.scalar('loss',loss)
accuracy_summary = tf.summary.scalar('accuracy',accuracy)

#x_image在程序中被归一化成了(-1,1)的值,但是tf.summary.image用的图是0-255之间,是像素值
#如果直接用的话会出问题,所以要先逆归一化一下
source_image = (x_image + 1)*127.5
inputs_summary = tf.summary.image('inputs_summary', source_image)

merged_summary = tf.summary.merge_all()
merged_summary_test = tf.summary.merge([loss_summary, accuracy_summary])


LOG_DIR = '.'
run_label = 'run_vgg_tensorboard'
run_dir = os.path.join(LOG_DIR, run_label)
if not os.path.exists(run_dir):
    os.mkdir(run_dir)
train_log_dir = os.path.join(run_dir,'train')
test_log_dir = os.path.join(run_dir,'test')
if not os.path.exists(train_log_dir):
    os.mkdir(train_log_dir)


#将模型保存在文件中
model_dir = os.path.join(run_dir,'model')
if not os.path.exists(model_dir):
    os.mkdir(model_dir)
#saver就是得到的一个文件句柄,可以帮我们把tensorflow训练过程中的某个快照(包含了所有参数和状态)
#给保存到文件中
saver = tf.train.Saver()
#指定要恢复的checkpoint的名字,例如这里我们恢复第6000次的
model_name = 'ckp-06000'
model_path = os.path.join(model_dir, model_name)


init = tf.global_variables_initializer()
batch_size = 20
train_steps = 10000
test_steps = 100

output_summary_every_steps = 100
output_model_every_steps = 100
# train 10k: 73.4%
with tf.Session() as sess:
    sess.run(init)

    #训练集和测试集都分别进行输出,建立2个writer
    train_writer = tf.summary.FileWriter(train_log_dir, sess.graph) 
    test_writer = tf.summary.FileWriter(test_log_dir)

    fixed_test_batch_data, fixed_test_batch_labels = test_data.next_batch(batch_size)
    
    #判断模型是否存在
    if os.path.exists(model_path + '.index'):
        saver.restore(sess, model_path)
        print('model restored from %s' % model_path)
    else:
        print('model %s does not exist' % model_path)

    for i in range(train_steps):
        batch_data, batch_labels = train_data.next_batch(batch_size)
        eval_ops = [loss,accuracy,train_op]
        shoud_output_summary = ((i+1)%output_summary_every_steps == 0)
        if shoud_output_summary:
            eval_ops.append(merged_summary)

        eval_ops_results = sess.run(
            eval_ops,
            feed_dict={
                x: batch_data,
                y: batch_labels})
        loss_val, acc_val = eval_ops_results[0:2]
        if shoud_output_summary:
            train_summary_str = eval_ops_results[-1]
            train_writer.add_summary(train_summary_str,i+1)
            test_summary_str = sess.run([merged_summary_test],
                                        feed_dict={
                                            x:fixed_test_batch_data,
                                            y:fixed_test_batch_labels,
                                        })[0]
            test_writer.add_summary(test_summary_str,i+1)

        if (i+1) % 100 == 0:
            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' 
                  % (i+1, loss_val, acc_val))
        if (i+1) % 1000 == 0:
            test_data = CifarData(test_filenames, False)
            all_test_acc_val = []
            for j in range(test_steps):
                test_batch_data, test_batch_labels \
                    = test_data.next_batch(batch_size)
                test_acc_val = sess.run(
                    [accuracy],
                    feed_dict = {
                        x: test_batch_data, 
                        y: test_batch_labels
                    })
                all_test_acc_val.append(test_acc_val)
            test_acc = np.mean(all_test_acc_val)
            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))
        if (i+1) % output_model_every_steps == 0:
            saver.save(sess, os.path.join(model_dir,'ckp-%05d' %(i+1)))
            print('model saved to ckp-%05d' %  (i+1))

总结一下

finetune可以根据checkpoint的来源不一样分成两部分,也就是一共有两个功能

①如果是别人的模型,别人的checkpoint

      我们构建了一个跟他相对应的网络结构,用他的参数初始化这个结构,然后再保存一些值不变,去调试

      这就是去微调别人已经train好的一个网络

②model是我自己的,但是中途没train好就停止了,然后断点续传

       我们可能在其他的一些实现里面看到它们的finetuning可能会比较简单,这是因为他们做了一些封装。不管他们外层的实现是什么样的,他们的底层的实现肯定是我们说的这几步

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值