Pytorch的cuda non_blocking (pin_memory)

non_blocking经常与DataLoader的pin_memory搭配使用

PyTorch的DataLoader有一个参数pin_memory,使用固定内存,并使用non_blocking=True来并行处理数据传输。

先来看一下过程吧:

1. x = x.cuda(non_blocking=True)
2. 进行一些和x无关的操作
3. 执行和x有关的操作

non_blocking=true下,1不会阻塞212并行。

这样将数据从CPU移动到GPU的时候,它是异步的。在它传输的时候,CPU还可以干其他的事情(不依赖于数据的事情)

.cuda()是为了将模型放在GPU上进行训练。

non_blocking默认值为False

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值