hdu6212-区间dp

给出一串01序列,三个相同的可以消除,祖玛游戏一样,
问至少需要几次可以全部消去完,考虑区间dp
dp[i][j]为消除i到j区间需要的最少步数,i和j都是把连续
相同的看成一块之后的序号哦,然后考虑消除的方式:
1: 区间分成两部分,各自消除各自的:dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j])
2.  中间消掉之后两边碰撞消掉:       dp[i][j]=min(dp[i][j],dp[i+1][j-1]+(a[i]+a[j])<3?
3.  中间一个球(一定得一个,不然变成2情况了)消除两边之后,三部分碰撞抵消
此时需要a[i]+a[j]<4 因为要保证消去左边或者右边之后中间的那一个不能和两边抵消
否则变成2情况了  所以为             dp[i][j]=min(dp[i][j],dp[i+1][k-1]+dp[k+1][j-1])
然后注意颜色一定01交替所以要保证a[i]和a[j]和a[k]颜色一样(通过奇偶看就可以了)

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int INF=1e9;
int dp[210][210],a[210];
int main()
{
    int t,cnt,manys=1;
    char str[210];
    scanf("%d",&t);
    while(t--)
    {
        scanf("%s",str+1);
        int len=strlen(str+1);
        cnt=1;
        a[cnt]=1;
        for(int i=2; i<=len; i++)
        {
            while(i<=len&&str[i]==str[i-1])
            {
                i++;
                a[cnt]++;
            }
            if(i<=len)
            {
                cnt++;
                a[cnt]=1;
            }
        }
        for(int i=1; i<=cnt; i++)
            dp[i][i]=a[i]==1?2:1;
        for(int k=2; k<=cnt; k++)
        {
            for(int i=1; i<=cnt; i++)
            {
                int j=i+k-1;
                if(j>cnt) continue;
                dp[i][j]=INF;
                for(int l=i; l<j; l++)
                    dp[i][j]=min(dp[i][j],dp[i][l]+dp[l+1][j]);
                if(j-i+1>=3&&(!((j-i)&1)))
                    dp[i][j]=min(dp[i][j],dp[i+1][j-1]+(a[i]+a[j]<3));
                if(a[i]+a[j]<4)
                    for(int l=i+2; l<j-1; l++)
                        {
                            if(!((l-i)&1)&&!((j-l)&1)&&a[l]==1)
                            dp[i][j]=min(dp[i][j],dp[i+1][l-1]+dp[l+1][j-1]);
                        }
            }
        }
        printf("Case #%d: %d\n",manys++,dp[1][cnt]);
    }
    return 0;
}
/*
给出一串01序列,三个相同的可以消除,祖玛游戏一样,
问至少需要几次可以全部消去完,考虑区间dp
dp[i][j]为消除i到j区间需要的最少步数,i和j都是把连续
相同的看成一块之后的序号哦,然后考虑消除的方式:
1: 区间分成两部分,各自消除各自的:dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j])
2.  中间消掉之后两边碰撞消掉:       dp[i][j]=min(dp[i][j],dp[i+1][j-1]+(a[i]+a[j])<3?
3.  中间一个球(一定得一个,不然变成2情况了)消除两边之后,三部分碰撞抵消
此时需要a[i]+a[j]<4 因为要保证消去左边或者右边之后中间的那一个不能和两边抵消
否则变成2情况了  所以为             dp[i][j]=min(dp[i][j],dp[i+1][k-1]+dp[k+1][j-1])
然后注意颜色一定01交替所以要保证a[i]和a[j]和a[k]颜色一样(通过奇偶看就可以了)
*/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值