数据作为新一代生产要素,蕴含的巨大价值得到逐步释放。但数据隐私及安全问题却日益凸显,用户数据隐私如何保护的问题亟待解决。隐私计算被视为解决此问题的“关键之钥”,与之相关的多方计算、可信计算、联邦学习已在众多领域被探讨。
隐私计算为信息隐私保护提供了重要的理论基础。其涵盖数据的产生、存储、计算、应用、销毁等信息流转的全生命周期,完成计算任务,使得数据在各个环节中“可用但不可见”。简单来说就是在保证数据安全的前提下,让数据可以自由流通或共享,消除数据孤岛问题,从而释放更大的数据价值,提升生产效率,推进产业创新。
隐私计算中有一条路径就是基于可信执行环境技术(Trusted Execution Environment)的可信计算,以Intel的SGX,AMD的SEV,ARM的Trust Zone等技术作为代表。可信计算是为了解决计算机和网络结构上的不安全,从根本上提高安全性的技术方法,可信计算是从逻辑正确验证、计算体系结构和计算模式等方面的技术创新,以解决逻辑缺陷不被攻击者所利用的问题,形成攻防矛盾的统一体,确保完成计算任务的逻辑组合不被篡改和破坏,实现正确计算。
Trusted Computing(TCP)是基于波卡生态上的新一代加密信任计算协议。TCP基于类 PoW 的经济激励模式,它释放无数 CPU 中隐私算力运用于波卡平行链,进而服务波卡上的 Defi 、数据服务等其他应用。
通过可信计算技术,TCP将根据分布式存储去中心化的特点,构建数据信息传递流量池,以通证作为基础支付