凸优化第二章凸集 2.4 广义不等式

2.4 广义不等式

  1. 正常锥与广义不等式
  2. 最小元和极小元

正常锥

一个锥K是正常锥需要满足以下几个条件:

  • K是凸的
  • K是闭的
  • K是实的,具有非空内部
  • K是尖的,不包含直线

广义不等式

用正常锥可以定义广义不等式,即R^n上的偏序关系。

x\preceq _{K}y\Leftrightarrow y-x \in K

严格偏序关系:

x\prec _{K} y\Leftrightarrow y-x\in int\, K(K内部)

K=R_+时,这种偏序关系也就是R上实际的\leqslant

例子:

       分量不等式:K=R_+^n\, ,X\preceq Y\Leftrightarrow x_i\leqslant y_i, i = 1\cdots n

       矩阵不等式:K=S^{n}_+,X\preceq Y \Leftrightarrow Y-X\in S^{n}_+,半正定。

广义不等式的性质:

  1. 对于加法保序:x\preceq_K y,u\preceq_K v\Rightarrow x+u\preceq_K y+v
  2. 传递性:x\preceq_K y,y\preceq_K z\Rightarrow x\preceq_K z
  3. 非负数乘保序性:x\preceq_K y,a\geq 0\Rightarrow ax\preceq_K ay
  4. 自反的:x\preceq_K x
  5. 反对称的:if\ x\preceq_K y,y\preceq _K x\Leftrightarrow x=y
  6. 极限运算保序:i=1,2\cdots ,x_i\preceq_K y_i,i\rightarrow \infty ,x_i\rightarrow x,y_i\rightarrow y\, \, \Rightarrow x\preceq_K y

最小元和极小元

在介绍极小元和最小元之前,先说明“可比较”的概念,广义不等式中的偏序关系比普通意义的不等式更复杂,在实数域,任意两个数都可比较,但是在广义不等式就未必行得通,比如分量不等式,两个向量x,y,如果x<y,则要求x的每一个分量都小于y的对应分量,如果x=\left (1,2 \right )^T,y=(2,1)^T,x和y就是不可比较的。

最小元

最小元:\forall y\in S都有x\preceq_K yx\in S,则x是S的最小元。

且x是S的最小元,当且仅当S\subseteqq x+K,x+K表示与x是可比较的(即可以与x相比)并且大于等于x的所有元素。

极小元

极小元;if y\in S,y\preceq_K x\Rightarrow y=x,则x是S的极小元。

x是S的极小元当且仅当(x-K)\cap S=\left\{x\right \},x-K表示与x是可比较的(即可以与x相比)并且小于x的所有元素。

K=R_+^2为例,下图,分别展示了其最小元和极小元

最小元

上图x_1为集合S_1的最小元,在K=R_+^2中,x\preceq_K y \Leftrightarrow x_1\leq y_1,x_2\leq y_2,以第一分量做水平坐标轴,第二分量做垂直坐标轴,x\preceq_K y在几何上可以看成是y在x的右上方,即上图浅色阴影区域,同时可以看出S\subseteqq x+K

极小元

上图展示了S_2的极小元x_2,首先可以看出S_2中的点并不是全部都与x_2可比较,但在S_2中与x_2可比较的全部的点中,x_2最小。

综上两图可以发现S中最小元m和极小元l的异同。

  1. 最小元m可与S中全部元素相比较,极小元l不与S中的全部元素可比较(将S中可与极小元l比较的元素集合记为C)。
  2. m在S中最小,l在C中最小。

 

来源:https://blog.csdn.net/wangchy29/article/details/86495751

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
凸优化》是一本由Stephen P. Boyd和Lieven Vandenberghe合著的经典教材,重点介绍凸优化理论和方法。该书分为10章,包含了凸集、凸函数、凸优化问题的建模和求解等内容。 在第一章中,作者介绍了凸集、凸函数和凸优化问题的基本概念。凸集是一个集合,其中任意两点的连线上的点也在集合内。凸函数则是定义在凸集上的函数,其一些重要性质包括下半连续、上半微分和Jensen不等式凸优化问题的一般形式是将凸函数最小化或最大化的问题。 接下来的几章分别介绍了凸集合和凸函数的具体性质,以及如何构建凸函数。第三章介绍了线性和二次优化问题,重点介绍了线性规划和二次规划问题的特性和求解方法。第四章介绍了凸优化问题建模的具体方法,包括约束规范化和不等式约束的线性组合。 第五章至第七章介绍了凸优化问题的数值解法。作者讨论了梯度下降法、牛顿法等一些基本的优化算法,以及它们的收敛性和复杂度。此外,作者还介绍了内点法、线性规划和二次规划的专用算法。 第八章介绍了凸优化问题在信号处理和通信系统中的应用,包括信号恢复、机器学习和图像处理等领域。第九章介绍了凸优化问题在控制系统中的应用,重点介绍了线性矩阵不等式和姿态估计等问题。 最后,第十章回顾了本书的主要内容,并给出了一些未来研究方向和应用领域的展望。 《凸优化》是一本系统、全面而且深入的教材,适合数学、工程和计算机科学等专业的学生和研究人员阅读。这本书不仅介绍了凸优化的理论和方法,还提供了实践中的应用示例和算法实现。无论是对于理论研究还是工程应用,本书都是一本极具价值的参考书。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值