凸集之对偶锥和对偶广义不等式

凸集之对偶锥和对偶广义不等式

1.对偶锥(Dual cones)
设K是一个圆锥体。集合
在这里插入图片描述
被称为K的对偶锥。正如顾名思义的,K∗是一个锥,并且总是凸的,即使原始的锥K不是凸的。

几何上,y∈K∗当且仅当−y是在原点处支持K的超平面的法线。
在这里插入图片描述
左图,向内法向y的半空间包含圆锥体K,所以y∈K∗。
右图,向内法向z的半空间不包含K,所以z∉K∗。

对偶锥满足几个性质,例如:
①K∗是封闭的和凸的;
②K1⊆K2意味着K2∗⊆K1∗;
③如果K的内部为非空,则K∗是指向的;
④如果K的闭合是指向的,那么K∗的内部是非空的。
⑤K∗∗是K的凸包的闭包。(因此,如果K是凸的和闭的,则K∗∗=K)。

2.对偶广义不等式(Dual generalized inequalities)
现在假设凸锥K是适当的,所以它导出了一个广义不等式K。然后它的对偶锥K∗也是适当的,从而导出了一个广义不等式。我们将广义不等式
K∗
称为广义不等式的对偶。
关于广义不等式及其对偶性的一些重要性质是:

在这里插入图片描述

在这里插入图片描述
3.对偶不等式中的最小元素与极小元素(Minimum and minimal elements via dual inequalities)
我们可以利用对偶广义不等式来刻画一个(可能是非凸的)集S⊆Rm的最小值和最小元素。

最小元素的对偶特征
我们首先考虑最小元素的特征:x是S的最小元素,对于广义不等式K,当且仅当对于所有λ≻K∗0,x是z∈S.几何上λTz的唯一最小化器,这意味着对于任何λ≻K∗0,超平面
在这里插入图片描述
是一个严格的支持超平面。(严格表示的支持超平面,我们的意思是,超平面只在x点处与S相交。)请注意,不需要集合S的凸性。

在这里插入图片描述如图所示,最小元素的双重特征。点x是集合S相对于R2+的最小元素。这相当于:对于每个λ≻0,超平面{z|λT(z−x)=0}严格支持S,即一边包含S,只在x触摸它。

最小元素的对偶性
现在我们转向最小元素的一个类似的表征。在这里,在充要条件之间存在着差距。如果λ≻K∗0和x将λTz比z∈S最小化,那么x是最小的。
在这里插入图片描述
如图所示,集合S⊆R2。相对于R2+,它的最小点集,显示为它的(左下)边界的较暗的部分。

S上的λT1z的最小值是x1,并且自λ1≻0以来是最小值。S上的λT2z的最小值是x2,这是S的另一个最小点,因为λ2≻0。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值