elmo算法解析

ELMo通过双向LSTM解决多义词问题,提供动态词向量。预训练模型根据上下文推断词向量,提升下游NLP任务性能。缺点包括LSTM的并行计算限制和上下文理解能力有限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2018年3月份提出ELMo(Embedding from Language models),模型通过对不同句子创建不同的词向量,进行动态调整,解决了之前工作2013年的word2vec及2014年的GloVe的多义词问题,可以称之为静态词向量。模型经过大量语料库预训练好之后
(context—before预测当前字,context—after预测当前字,而且不是同时的),使用预训练时,将任务实际的一句话或一段话输入该模型,模型会根据上下文来推断每个词对应的词向量,可以称之为动态词向量。
在这里插入图片描述
模型使用双向的LSTM语言模型,由一个前向和一个后向语言模型构成,目标函数是这两个方向语言模型的最大似然函数。给定一串长度为N的词条(t1,t2,…,tN),前向语言模型通过对给定句子左侧(t1,…tk−1)预测tk进行建模(auto regressive language model),前向LSTM:在这里插入图片描述
同理,后向语言模型通过对给定句子右侧(tN…tk-1)预测tk进行建模(auto regressive language model),后向LSTM:在这里插入图片描述
求取最大似然函数在这里插入图片描述
经过双向三层LSTM进行特征提取(word features,syntactic features,semantic features),得到预训练模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值