数据、算法、场景:工程化的“三驾马车”

705886ec8cb400f802d2609677737957.gif

作者:陆兴海 彭华盛 编著

来源:大数据DT(ID:hzdashuju)

3d86d04d255c09edeeec7762bbf6377e.jpeg

人们对新事物的认知过程总是螺旋式迭代演进的,对于智能运维也是如此,智能运维是运维发展的方向,而且是一个长期的过程—从经验主义到数据驱动,再回归到业务驱动的过程。

从2016年对于Gartner的概念的理解,到之后每一年不断的探索与实践,到2020年,在笔者参加的智能运维国家标准编写组会议上,行业内达成了高度的、更加面向现实的共识:以数据为基础、以场景为导向、以算法为支撑,如图2-1所示。

f85ca9392a5cd024a6d0bddc801ec2db.png

▲图2-1 行业对智能运维发展演进的理解

智能运维一定来源于非常好的数据基础,同时,如果没有明确的业务场景,或者需求,或者功能方面的落脚点,所谓的智能化就是为了AI而AI,也没有意义。工程化算法是要拟合数据的,根据数据和场景需求才能选择或研发合适的算法。只有具备上述三个条件,才能真正形成一个工程化落地的智能运维,如图2-2所示。

5dae8c7b714bbf7c0087cded2c486896.png

▲图2-2 “三架马车”工程化落地的智能运维

需要着重提及的是,以往很多用户忽略了作为智能业务运维“基石”的运维数据的重要性。

为切实落地企业的智能业务运维规划,一方面要强调运维数据的基础作用,另一方面要形成运维数据治理与应用的全局体系,围绕规划、系统与实施三个核心阶段工作,面向运维数据的全生命周期与业务导向结果,从数据的整体规划、运维数据源、数据采集、数据的计算与处理、指标管理体系的规划与实施、专业运维数据库的建立、数据的典型应用场景等多角度进行思考。

但需要正视的是我们对运维数据的认识及应用还处于皮毛阶段,虽有理念但缺乏必要的、可执行的方法。随着运维数据平台的建设,将极有可能出现当前大数据领域出现的数据孤岛、数据不可用、数据质量不高、融合应用难、有数据不会用等诸多问题。上述问题,在当前运维领域资源投入不足时显得尤其重要。

借鉴大数据领域数据治理的经验,反思运维数据平台建设应该关注的问题,减少不必要的坑,做好运维数据治理,让运维数据更好用、用得更好,完善运维数字化工作空间。

在运维领域,运维数据分布在大量的机器、软件和“监管控析”工具上,除了上面大数据领域提到的数据孤岛、质量不高、数据不可知、数据服务不够的痛点外,运维数据还有以下突出痛点:

一、资源投入不够。

从组织的定位看,运维属于企业后台中的后台部门,所做的事甚至都很难让IT条线的产品、项目、开发明白系统架构越来越复杂、迭代频率越来越高、外部环境越来越严峻等需要持续性的运维投入,更不要说让IT条线以外的部门理解你在做的事,在运维的资源投入通常是不够的。

所以,运维数据体系建设要强调投入产出比,在有限的资源投入下,收获更多的数据价值。

二、数据标准化比例低。

运维数据主要包括监控、日志、性能、配置、流程、应用运行数据。除了统一监控报警、配置、机器日志、ITIL里的几大流程的数据格式有相关标准,其他数据存在格式众多、非结构化、实时性要求高、海量数据、采集方式复杂等特点,可以说运维源数据天生就是非标准的,要在“资源投入不够”的背景下,采用业务大数据的运作模式比较困难。

三、缺乏成熟的方法。

虽然行业也提出了ITOA、DataOps、AIOps等运维数据分析应用的思路,但是缺少一些成熟、全面的数据建模、分析、应用的方法,主流的运维数据方案目前主要围绕监控和应急领域探索。

四、缺乏人才。

如“资源投入不够”这点提到的背景,因为投入不足,很难吸引到足够的人才投入到运维数据分析领域。

通俗一点来说,就是运维数据分析要借鉴当前传统大数据领域数据治理的经验,提高投入产出比,少走弯路,少跳坑。

本文摘编自《运维数据治理:构筑智能运维的基石》(ISBN:978-7-111-70475-1),经出版方授权发布。

d904b2f149ef085c763709cf68695158.png

延伸阅读《运维数据治理》

点击上图了解及购买

转载请联系微信:DoctorData

推荐语:一本书讲透“运维数据治理”系统地介绍了数据治理的知识体系和底层逻辑,还提炼了智能数据运维体系建设的实践路径。

关于作者:陆兴海,云智慧(北京)科技有限公司副总裁,目前负责咨询业务。具备十多年互联网、信息化以及运维相关领域的产品规划、设计与研发经验,是国内IT相关服务领域最早的实践者和专家之一,同时也是智能运维国标编写组核心成员。

彭华盛,超过10年的金融领域运维工作,期间负责参与金融企业运维组织、流程、工具的建设,包括重大业务系统项目与数据中心工程性项目的实施、数据中心标准化工作流程构建、运维工具体系的规划与研发、数字化转型研究与实施等相关工作,对金融领域的运维有较全面的理解,探索推进数字化技术与运营转型双轮驱动的协同模式。

79d63ac14c09dd011bb3292b60e710cb.gif

更多精彩回顾

书讯 |8月书讯(上) | 重磅新书来袭!书讯 |8月书讯(下) | 重磅新书来袭!资讯 |《Java核心技术》基于Java 17全面升级!干货 |再见了Java8,Java17:我要取代你干货 | 李三红:Java版本升级需要纳入到可持续性维度
干货 |市面上的大前端岗位到底是做什么的?

56379393dc6b81223543555342cefd2c.gif

4d9faf491fec8c324f5aa44baa7d6217.gif

点击阅读全文购买

  • 0
    点赞
  • 0
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值