PyTorch GPU显存管理与大规模张量操作

在深度学习领域,GPU显存管理是一个至关重要的话题。本文将通过实际代码示例,深入探讨PyTorch中的GPU显存管理以及如何创建和操作大规模张量。

1. 环境检测与显存监控

首先,我们需要建立一个可靠的显存监控系统。以下是一个用于获取GPU显存信息的函数:

def get_memory_info():
    """获取显存信息"""
    if torch.cuda.is_available():
        current = torch.cuda.memory_allocated() / 1024**2
        max_mem = torch.cuda.max_memory_allocated() / 1024**2
        total = torch.cuda.get_device_properties(0).total_memory / 1024**2
        print(f"当前显存使用: {
     current:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老大白菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值