在深度学习领域,GPU显存管理是一个至关重要的话题。本文将通过实际代码示例,深入探讨PyTorch中的GPU显存管理以及如何创建和操作大规模张量。
1. 环境检测与显存监控
首先,我们需要建立一个可靠的显存监控系统。以下是一个用于获取GPU显存信息的函数:
def get_memory_info():
"""获取显存信息"""
if torch.cuda.is_available():
current = torch.cuda.memory_allocated() / 1024**2
max_mem = torch.cuda.max_memory_allocated() / 1024**2
total = torch.cuda.get_device_properties(0).total_memory / 1024**2
print(f"当前显存使用: {
current: