SOL
70pts的很好做,暴力预处理之后直接回答即可,复杂度
O
(
N
2
)
O(N^2)
O(N2)
100pts的其实只需要加一个倍增(和一个Set/双向链表)
先说说预处理,
设
n
x
t
[
i
]
[
0
]
nxt[i][0]
nxt[i][0],
d
i
s
[
i
]
[
0
]
dis[i][0]
dis[i][0]表示从
i
i
i出发到最近的点及到这个点的距离
设
n
x
t
[
i
]
[
1
]
nxt[i][1]
nxt[i][1],
d
i
s
[
i
]
[
1
]
dis[i][1]
dis[i][1]表示从
i
i
i出发到次近的点及到这个点的距离
一个set把元素按高度排序之后顺次扔进去,由于set元素有序,直接尝试对前后最近、次近的元素进行修改即可,复杂度
O
(
N
∗
l
o
g
N
)
O(N*logN)
O(N∗logN)
据说双向链表也可以实现,然而wtcl不会(
预处理完之后,就可以倍增实现答案的回答
设
p
o
s
[
i
]
[
j
]
pos[i][j]
pos[i][j]表示从
i
i
i开始走了
2
j
2^j
2j轮之后所到的的位置,并设
f
[
i
]
[
j
]
[
0
]
、
f
[
i
]
[
j
]
[
1
]
f[i][j][0]、f[i][j][1]
f[i][j][0]、f[i][j][1]分别表示两车已行驶的距离
然后就是正常的倍增操作了
注意初始化
代码:
#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
inline int rd(){
int re data=0,w=1;static char ch=0;ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(isdigit(ch))data=(data<<1)+(data<<3)+(ch^48),ch=getchar();
return data*w;
}
const int N=1e5+5;
struct pt{int id,h;}a[N];
inline bool operator <(pt a,pt b){return a.h<b.h;}
set<pt>s;set<pt>::iterator it;
int n,m,x0,s0,nxt[N][2],dis[N][2],pos[N][20];ll f[N][20][2];
inline void edit(pt x,pt y){
if(!nxt[x.id][0])nxt[x.id][0]=y.id,dis[x.id][0]=abs(x.h-y.h);
else if(dis[x.id][0]>abs(x.h-y.h)||(dis[x.id][0]==abs(x.h-y.h)&&y.h<a[nxt[x.id][0]].h))
nxt[x.id][1]=nxt[x.id][0],dis[x.id][1]=dis[x.id][0],nxt[x.id][0]=y.id,dis[x.id][0]=abs(x.h-y.h);
else if(dis[x.id][1]>abs(x.h-y.h)||(dis[x.id][1]==abs(x.h-y.h)&&y.h<a[nxt[x.id][1]].h))
nxt[x.id][1]=y.id,dis[x.id][1]=abs(x.h-y.h);
else if(!nxt[x.id][1])nxt[x.id][1]=y.id,dis[x.id][1]=abs(x.h-y.h);
}
inline void query(int s,int x,ll &disa,ll &disb){
for(int re i=19;i>=0;--i)
if(f[s][i][0]+f[s][i][1]<=x&&pos[s][i])
disa+=f[s][i][0],disb+=f[s][i][1],x-=f[s][i][1]+f[s][i][0],s=pos[s][i];
if(nxt[s][1]&&dis[s][1]<=x)disa+=dis[s][1];
}
signed main(){
n=rd();
for(int re i=1;i<=n;++i)a[i].h=rd(),a[i].id=i;
for(int re i=n;i;--i){
s.insert(a[i]),it=s.find(a[i]);
if(it!=s.begin()){
it--,edit(a[i],*it);
if(it!=s.begin())it--,edit(a[i],*it),it++;
it++;
}
if((++it)!=s.end()){
edit(a[i],*it);
if((++it)!=s.end())edit(a[i],*it),it--;
it--;
}
}
for(int re i=1;i<=n;++i)pos[i][0]=nxt[nxt[i][1]][0],f[i][0][0]=dis[i][1],f[i][0][1]=dis[nxt[i][1]][0];
for(int re j=1;j^20;++j)
for(int re i=1;i<=n;++i)
pos[i][j]=pos[pos[i][j-1]][j-1],f[i][j][0]=f[i][j-1][0]+f[pos[i][j-1]][j-1][0],f[i][j][1]=f[i][j-1][1]+f[pos[i][j-1]][j-1][1];
x0=rd();ll re a=1e15,b=0ll;
for(int re i=1;i<=n;++i){
ll re disa=0ll,disb=0ll;
query(i,x0,disa,disb);
if(disb&&(!s0||disa*b<disb*a))s0=i,a=disa,b=disb;
}printf("%d\n",s0);
m=rd();while(m--){
ll re disa=0ll,disb=0ll;int re s=rd(),x=rd();
query(s,x,disa,disb),printf("%d %d\n",disa,disb);
}
}