角互补三角形面积公式的证明过程

博客主要围绕证明三角形面积比等式 S△ABCS△DCE=AC∗BCCD∗CE 展开。通过做辅助线 BE 构造等高模型,得出 S△BECS△CED=BCCD 和 S△ABCS△BEC=ACCE,两式相乘得到最终证明结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求证

S △ D C E S △ A B C = C D ∗ C E A C ∗ B C \frac {S△DCE} {S△ABC} = \frac {CD * CE} {AC * BC} SABCSDCE=ACBCCDCE

在这里插入图片描述

证明过程

做辅助线 BE,构造等高模型。

S △ C E D S △ B E C = C D B C \frac {S△CED} {S△BEC} = \frac {CD} {BC} SBECSCED=BCCD

S △ B E C S △ A B C = C E A C \frac {S△BEC} {S△ABC } = \frac {CE} {AC} SABCSBEC=ACCE

(1) 式 乘以 (2) 式:

S △ C E D S △ B E C ∗ S △ B E C S △ A B C = S △ C E D S △ A B C = C D ∗ C E A C ∗ B C \frac {S△CED} {S△BEC} * \frac {S△BEC} {S△ABC} = \frac {S△CED} {S△ABC} = \frac {CD * CE} {AC * BC} SBECSCEDSABCSBEC=SABCSCED=ACBCCDCE

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值