抵挡不住 ChatGPT 4.0 的诱惑付了费,发现每 3 小时只能发 40 条消息,我傻眼了

本文围绕ChatGPT 4.0使用限制展开。作者升级后发现使用策略调整,有网友认为是为确保服务质量,也有人吐槽其吸引力下降。OpenAI从确保服务质量、优化资源分配、维护系统安全、遵守法规政策、提高AI系统质量、研究用户行为和产品发展等方面,解释了设置使用频次限制的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我在 2023年的总结文章里,曾经提到,我的生活和工作,已经离不开 ChatGPT 了:

一个 41 岁程序员的 2023 年度总结:异种真气

在兔年的尾巴,我还是没抵挡住 ChatGPT 4.0 的诱惑,花钱升级到 4.0 了。

升级之后,才发现 OpenAI 针对 ChatGPT 4.0,早在三个月前,就调整了 ChatGPT 4.0 的使用策略。

当我登录之后,我的账号显示:

With DALL-E, browsing and analysis Limit 40 messages / 3 hours.

虽然我之前使用 ChatGPT 3.5 时,每天总共也就发送了 30~40 条左右的 Messages 吧,按理说 ChatGPT 4.0 这个每 3 小时 40 条的限制,对于我来说够用了,但是刚看到这个限制时,我还是觉得有点意外和不舒服。

一旦 3 小时内使用次数超过限制后,会收到这样的错误消息:

You have reached the current usage cap for GPT-4, please try again after XXX.

我的第一反应就是网上看看 ChatGPT 4.0 的用户,对这个调整的看法。

有网友评论,这是因为 OpenAI 的服务器不堪重负——使用的人实在太多了,因而推出的一种能确保现有用户服务质量的措施:

OpenAI 每天运行 ChatGPT 的成本是 70 万美元,每月的纯运营成本则将近 3000 万美元:

也有网友吐槽,现在 ChatGPT 正在慢慢失去吸引力,和刚发布时相比,似乎变得越来越笨,而且各种限制越来越多:

下面这些网友的思考角度别具一格:计算每条消息折合多少钱。

我也忍不住计算了一下,ChatGPT 4.0 一个月 20 美元,大约折合人民币 144 元,平均每天成本 4.8 元

如果我每天发送 80 条消息,平均每条消息 6 分钱。如果每天在线 9 小时,发满 120 条,则每条消息的成本摊薄到 4 分钱

下面这位网友提到,Enterprise 即企业版的 ChatGPT,每 3 小时的限制提高到 500 条。但这位网友没有回答别人向他提出的该企业版的费用问题。

这是因为 OpenAI 官网也没有明确给出 Enterprise 版本的 Pricing 信息,只是隐晦的提到 Contact Sales,也就是价格和销售私聊。

但有网友也提到了,这个限制只适用于带有 Dall-E 选项的 ChatGPT 4.0.

OpenAI 的 Dall-E 是一款专注于图像生成领域的人工智能模型,这个模型基于深度学习和生成对抗网络(GAN)的原理,能够根据用户输入的描述生成高质量、富有创意的图像。

升级到 ChatGPT 4.0 之后,发送 Prompt 时默认使用的就是支持 Dall-E 的模型,这一点从输入框支持上传本地文件就能识别出来:

而 Classic 即经典版的 ChatGPT 4.0,和 ChatGPT 3.5 一样,只支持文字输入:

经过 Dall-E 武装的 ChatGPT 4.0,可以直接在 Prompt 输入框发出绘图指令。比如我让 ChatGPT 4.0 画一位 80 岁的老汉,坐在电脑面前专心致志地写代码,笔记本电脑显示器上显示着 ABAP 代码。

ChatGPT 使用 Dall-E 绘制出的图案,除了显示器屏幕显示 ABAP 之外,我提出的其他需求,都成功完成了。图片中显示器里的代码我看不清楚,但肯定不是 ABAP 代码。

这条评论… 金某人躺枪了。

这位网友来自一个最低工资只有 100 美元的国家,而且他为 ChatGPT 支付了 20 美元。触发了三小时的限制后,这位网友希望退款

最后,让 ChatGPT 4.0 自己来做出对这个限制的解释。

Prompt:

请你扮演一位 OpenAI 的高管。据用户实际使用发现,ChatGPT 4.0 具有每 3 个小时最多只能发送 20 条消息的限制。请你解释为什么 OpenAI 会做出这种在指定时间间隔内具有使用频次的限制?

ChatGPT 的回复如下。好吧,它的字多,我信它。

我后续会探索 ChatGPT 4.0 有什么好玩的东西,然后分享给大家。

作为一位 OpenAI 的高管,我理解这种关于 ChatGPT 4.0 使用限制的政策可能会引起用户的关注和疑问。这里我会从六个不同的方面来解释为什么 OpenAI 会对 ChatGPT 4.0 设定在指定时间间隔内的使用频次限制。尽管这样的限制可能给用户带来一些不便,但这些决策背后存在着重要的考量和原因。

1. 确保服务质量和可靠性

保护系统稳定性:OpenAI 旨在为所有用户提供高质量和可靠的服务。当大量用户同时使用 ChatGPT 时,对服务器资源的需求会显著增加。设定消息发送上限有助于防止系统过载,确保每个用户都能获得稳定且连贯的体验。这种限制有助于避免系统崩溃或响应时间过长的情况。

提高响应速度:通过控制每个用户的请求量,系统能够更有效地分配资源来处理每个请求。这不仅保证了服务的稳定性,也有助于提高响应速度,使用户体验更为流畅。

2. 优化资源分配

公平使用:限制每个用户的消息数量能确保所有用户都有机会平等地访问服务。在不设限的情况下,某些高频使用用户可能会占用过多资源,导致其他用户体验下降。此举确保了资源的更公平分配。

成本效率:运行如 ChatGPT 这样的高级 AI 模型需要大量的计算资源,这同时也意味着高昂的运营成本。限制消息数量有助于 OpenAI 更有效地管理成本,同时为尽可能多的用户提供服务。

3. 维护系统安全

防止滥用:设置使用限制有助于防止恶意用户滥用系统,例如自动化的垃圾邮件发送、自动化攻击等。这种做法有助于保护系统免受攻击,维护用户和数据的安全。

数据保护:通过限制请求频率,OpenAI 可以更好地监控和分析数据流,从而有效地识别和防范可能的数据泄露或不当使用。

4. 遵守法规和政策

法律合规:在某些国家和地区,政府对 AI 和数据使用有严格的法律法规。限制使用频率有助于 OpenAI 确保遵守这些规定,避免法律风险。

隐私保护:通过控制数据处理量,OpenAI 能够更有效地管理用户数据,确保遵守隐私保护法规,防止用户信息泄露。

5. 提高 AI 系统的质量

数据质量控制:通过限制消息数量,OpenAI 能够更有效地监控和管理输入到系统中的数据质量。这有助于避免噪音数据的累积,从而提高 AI 模型的准确性和可靠性。

持续改进:限制使用频率还可以使 OpenAI 有更多资源进行系统的维护和更新,包括修复已知问题和引入新功能,从而不断提升 AI 系统的整体性能和用户体验。

6. 用户行为研究和产品发展

理解用户需求:通过分析用户如何在限制条件下使用 ChatGPT,OpenAI 可以更好地理解用户的实际需求和使用模式。这有助于指导未来的产品改进和创新。

产品迭代:限制使用频率还可以作为一种实验手段,帮助 OpenAI 测试不同的操作模式,评估其对用户体验和系统性能的影响,从而指导产品的持续迭代和优化。

结论

总的来说,ChatGPT 4.0 中设置的使用频次限制是出于保证服务质量、优化资源分配、维护系统安全、遵守法规政策、提高 AI 系统质量,以及促进用户行为研究和产品发展等多方面考虑。这些限制虽然可能在一定程度上影响某些用户的使用体验,但它们对于保障所有用户能够公平、安全地使用高质量的 AI 服务是必要的。OpenAI 始终致力于在满足用户需求和维护整体系统健康之间找到最佳平衡点。

这是一个很有趣的场景!我们可以帮助小明设计一个简单的 Python 程序,将英文单词形式的数字转换为对应的数值,并对账单进行求和。 下面是一个示例程序: ```python # 定义英文单词到数字的映射 word_to_number = { "zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11, "twelve": 12, "thirteen": 13, "fourteen": 14, "fifteen": 15, "sixteen": 16, "seventeen": 17, "eighteen": 18, "nineteen": 19, "twenty": 20, "thirty": 30, "forty": 40, "fifty": 50, "sixty": 60, "seventy": 70, "eighty": 80, "ninety": 90, "hundred": 100 } def convert_english_bill(bill_list): total_sum = 0 for bill in bill_list: # 将每个账单项分解并解析 if isinstance(bill, str): # 检查是否为字符串 words = bill.split() # 分割成单词列表 value = 0 current = 0 for word in words: if word == "hundred": current *= word_to_number["hundred"] else: current += word_to_number[word] value += current total_sum += value return total_sum # 示例账单数据(交换生写的) bills_written_by_exchange_student = [ "one hundred thirty five", # 135 "two hundred forty one", # 241 "fifty six" # 56 ] total_amount = convert_english_bill(bills_written_by_exchange_student) print("今天的总营业额是:", total_amount) # 输出结果应为 432 ``` ### 解释: 这个程序通过建立一个 `word_to_number` 字典,实现了从英文单词表示的金额到实际数字之间的转换。我们遍历每一账单记录,并将其转化为具体的数值后再累加起来。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值