最近笔者在学习机器学习领域的 Transformer 模型,也接触到了编码器和解码器这一对概念。
下面是笔者的一些学习笔记,如理解有错误,请各位同行指正。
Transformer 模型概述
Transformer 模型自从 Vaswani 等人提出以来,已经成为深度学习领域的关键突破,特别是在 NLP 任务中表现卓越。Transformer 模型的结构中,编码器和解码器是两大主要组件,尤其适合处理序列到序列(Seq2Seq)任务,比如机器翻译、文本摘要生成等。
编码器(Encoder)和解码器(Decoder)的设计概念类似于神经网络中的“输入处理”和“输出生成”两个阶段。编码器的主要任务是将输入数据转换为一种便于处理的抽象表示,而解码器的任务则是根据这种抽象表示生成目标输出数据。
尽管编码器和解码器有各自不同的功能,但它们在架构和注意力机制上存在许多相似性。
编码器的作用
编码器的基本结构和原理
编码器在 Transformer 模型中用于处理输入数据,将其转换为特征向量表示。在输入经过编码器后,得到了能够抽象表示输入序列信息的隐向量(Hidden Representation)。这种隐向量可以看作是输入数据的一种压缩、总结与抽象的表达,便于模型后续进行信息处理。
编码器由多个相同结构的编码层(通常是堆叠的层次结构)组成,每一层包含以下两个主要部分:
- 多头自注意力(Multi-Head Self-Attention)机制。
- 前馈神经网络(Feed Forward Neural Network)。
编码器首先对输入进行嵌入(Embedding),通常是将输入的单词通过查找词嵌入矩阵转换为词向量。这种词向量通常保留了单词间的某种语义关系,便于模型后续提取更多特征。
接下来,编码器通过多头自注意力机制对输入序列中的所有词进行建模。这意味着它会分析句子中所有单词之间的关系,并据此生成更加细致的特征表示。例如,在一个英语句子 The cat sat on the mat
中,多头自注意力机制会将 cat
和 sat
之间的联系表示得非常清晰,因为在句子中 cat
是执行 sat
动作的主体。因此,多头注意力机制能够帮助模型更好地理解单词之间的依赖关系,不仅限于相邻的单词,还包括句子中长距离的依赖。
自注意力机制与编码器的关键作用
自注意力机制是 Transformer 中的核心组件,其通过让每个单词能够“注意到”句子中的其他所有单词来捕获输入序列中的全局信息。
以翻译任务为例,假如我们有一个句子 She gave me the book that I had been looking for
,句中 that
和 book
的关系比较远,如果只使用传统 RNN 模型来处理,可能会受到长距离依赖的影响而产生信息丢失。但通过自注意力机制,编码器可以对句子中所有位置的单词进行建模,使得 that
能够注意到 book
,从而得到更好的理解。
在多头自注意力中,输入序列经过查询(Query)、键(Key)和值(Value)映射。查询和键的点积结果表示不同单词之间的相似度,而最终通过对这些相似度进行加权计算,生成对每个单词的新的表示。这种处理方式使得编码器能够捕获句子中的长距离依赖。
编码器的实际应用案例
以机器翻译为例:假设我们要将一个中文句子 她给了我那本我一直在找的书
翻译成英文。
编码器首先将中文句子分成若干个词,并通过自注意力机制建模各个词之间的关系。编码器的作用是将整个句子的信息进行编码,使得它能够将 她
和 书
之间的关系、动作 给
的主体等信息有效地表示出来。这种抽象的特征向量之后会被解码器用于生成目标语言的句子。
例如,当编码器输出 她给了我那本我一直在找的书
的特征向量时,解码器可以通过这种特征向量精确地生成 She gave me the book I had been looking for
,其中编码器的作用是对输入句子的全部信息进行全面理解与表征。
解码器的作用
解码器的基本结构和原理
解码器的主要任务是将编码器生成的特征表示转换为输出序列。以机器翻译为例,解码器的目标是生成翻译后的目标语言文本。在解码器的结构上,它由与编码器类似的多层堆叠的解码层组成,每一层也包含多头注意力机制和前馈神经网络,但与编码器的不同之处在于解码器多了一层编码器-解码器注意力层(Encoder-Decoder Attention Layer)。
在具体工作流程上,解码器的工作主要可以分为以下几个阶段:
-
通过自注意力机制捕获解码器输入的依赖关系。这是因为解码器在生成输出时是逐步生成的,比如生成第一个词
She
,然后生成第二个词gave
,需要依赖已经生成的词进行自注意力计算。 -
使用编码器-解码器注意力机制从编码器的输出中提取信息。解码器在生成每一个新词时都需要参考编码器生成的特征向量来获取有关输入句子的上下文信息。
-
通过前馈神经网络进一步对这些信息进行处理,生成下一步的预测。
编码器-解码器注意力机制的作用
编码器-解码器注意力机制的独特之处在于,它将编码器的输出特征与解码器当前的状态相结合。这意味着,解码器不仅仅依赖于自己生成的内容(即已经生成的目标语言单词),还可以参考编码器对输入序列的表征。
例如,当解码器在翻译句子时遇到需要生成主语或者谓语的时刻,它可以从编码器那里获取关于句子结构、主语是什么、对象是什么等信息。这种编码器-解码器的交互使得模型在翻译或者文本生成过程中表现得更加自然与准确。
解码器的实际应用案例
在文本摘要任务中,假设输入是一篇长篇的文章,目标是生成一个简短的摘要。在这种情况下,编码器的作用是将整篇文章进行编码,使得解码器能够理解文章的主旨、关键事件、重要细节等。解码器接着根据这些编码的信息来生成简短的摘要,通常生成过程是逐词生成,每一步都会考虑到前一步生成的内容。
举例来说,输入的一篇文章讨论了一场科学会议的主要内容,包括各个科学家的演讲、重要的实验成果、未来的研究方向等。编码器会首先处理整篇文章,提取出关于科学家、实验和研究方向的特征表示。解码器随后将这些特征表示用于生成摘要,例如 会议讨论了多个重要的科学研究成果,包括新的量子计算方法和癌症治疗突破。
解码器能够从编码器的表示中理解哪些是重要的内容,并据此生成信息更加密集和简洁的输出。
编码器和解码器的协同作用
编码器和解码器之间的交互是 Transformer 的核心所在。编码器负责将输入数据转换为包含所有必要信息的特征向量,解码器则将这些特征向量转换为目标输出序列。这个过程类似于人类翻译员:当翻译员接收到一个长句子时,首先会对整个句子进行理解与记忆(类似于编码器),然后在脑海中构建一个新的句子来准确表达原句的含义(类似于解码器)。
以机器翻译为例,编码器的抽象特征表示实际上是将原句的语义压缩到了一个高维空间中的某个点。解码器在这个基础上,根据需要逐步解码出新的句子,从而实现源语言到目标语言的映射。编码器与解码器的协同作用使得 Transformer 模型在不同语言的上下文理解中表现优异,也使得它在翻译的准确性和流畅度上远远超过了传统的 RNN 或 LSTM 模型。
Transformer 编码器的独立应用:BERT 模型
虽然 Transformer 最初是作为一种编码器-解码器架构被提出,但后来也有许多变体仅使用编码器或者解码器部分。编码器在 NLP 领域的一个非常著名的应用就是 BERT(Bidirectional Encoder Representations from Transformers)模型。
BERT 是一个仅使用编码器的模型,它通过预训练在大量文本数据上学习单词之间的上下文关系,能够为几乎所有的 NLP 任务提供强大的特征表示。例如在问答系统中,BERT 可以帮助模型理解问题与答案之间的联系,从而在一篇文章中找到最合适的答案。这是因为编码器的自注意力机制能够对输入文本进行双向建模,考虑到每个单词在上下文中的位置及其依赖关系。
举例来说,对于一个问题 苹果公司创立于哪一年?
,当 BERT 处理这个问题时,它可以理解 苹果公司
是一个专有名词,创立
是动词,哪一年
提示了一个具体的时间信息。经过编码器的处理,这些信息会被总结到特征向量中,再结合文章的特征表示,帮助模型快速定位答案,例如 1976年
。
Transformer 解码器的独立应用:GPT 系列模型
另一方面,解码器在 NLP 任务中也有其独立的应用,最著名的例子就是 GPT(Generative Pre-trained Transformer)系列模型。GPT 仅使用解码器部分,并通过大规模文本数据的预训练来学习如何生成连贯的语言。GPT 的任务通常是语言生成,因此其解码器的设计专注于如何根据已有的文本预测下一个词。
以故事生成任务为例,假设输入是一段文字 从前有一个小镇,镇上的人们都喜欢...
,GPT 可以使用解码器生成这段文字的续篇。解码器通过参考已经生成的词以及隐藏状态,逐步预测并生成新词,最终得到一段完整的故事,例如 ...镇上的人们都喜欢在日落时分聚集在广场上,分享彼此的故事与笑声。
这种逐词生成的过程使得 GPT 能够灵活地完成从对话生成到文本摘要等一系列任务。
编码器与解码器的总结及其影响
Transformer 模型中的编码器和解码器各自负责不同的任务,但其作用的紧密协作成就了当前许多 NLP 系统的成功。在编码过程中,输入信息被高效地压缩和表征,为解码器提供全面、上下文丰富的特征。在解码过程中,基于编码器的表征生成目标输出,使得整个系统具备强大的序列到序列转换能力。
编码器的作用类似于人的理解过程,将信息精简、抽象化处理。而解码器则类似于人的表达过程,基于对事物的理解,用另一种语言或者方式进行表达。通过将这两部分结合,Transformer 实现了自然语言处理任务中的高效性和高准确性。