请详细介绍一下bert-base-chinese模型?
BERT-base-chinese是一种预训练的深度双向变压器模型,用于中文自然语言处理任务。BERT(Bidirectional Encoder Representations from Transformers)模型是一种用于自然语言处理(NLP)任务的强大模型,由Google在2018年提出。BERT模型的主要优势在于其能够捕捉文本中的双向上下文信息,从而提高了NLP任务的性能。
BERT-base-chinese模型的详细介绍如下:
-
架构:BERT-base-chinese采用了基本的BERT架构,包括12层的Transformer编码器,每层有12个自注意力头,总共有110M参数。
-
预训练数据:BERT-base-chinese模型使用中文维基百科(约2.5亿字)进行预训练。预训练任务包括遮蔽语言模型(Masked Language Model, MLM)和下一个句子预测(Next Sentence Prediction, NSP)。
-
词汇表:BERT-base-chinese使用了一个包含21128个汉字的词汇表,该词汇表覆盖了大部分常用汉字。模型使用WordPiece分词器进行分词。