任意信号在完备正交函数系中的表示法

1. 信号的正交分解

信号分解的目的:1. 将任意信号分解为单元信号之和,从而考察信号的特性
\quad \quad \quad \quad \quad \quad \quad 2. 简化电路分析与计算,总响应=单元响应之和

1. 矢量的正交分解

  1. 分解原则:剩余部分的误差分量最小
    分解原则
  2. 正交分解
    平面中任一矢量可分解为x,y二方向矢量
    空间中任一矢量可分解为x,y,z三方向矢量
    一个三维空间矢量必须用三个正交矢量来表示,如果用二维矢量表示会出现误差

2. 信号的正交分解

f 1 ( t ) , f 2 ( t ) f_1(t), f_2(t) f1(t),f2(t)为任意两个信号
f 1 ( t ) = C 12 f 2 ( t ) + f e ( t ) f_1(t)=C_{12}f_2(t)+f_e(t) f1(t)=C12f2(t)+fe(t)
f 1 ( t ) ≈ C 12 f 2 ( t ) f_1(t) \approx C_{12}f_2(t) f1(t)C12f2(t) 则:
误差函数 f e ( t ) = f 1 ( t ) − C 12 f 2 ( t ) f_e(t) = f_1(t)-C_{12}f_2(t) fe(t)=f1(t)C12f2(t)
分解原则: f e ( t ) f_e(t) fe(t)的方均值最小,即误差信号功率(能量)最小
求相关系数:误差函数方均值最小时求出相关系数 C 12 C_{12} C12
求相关系数
表达式
比较公式(1)和(2),分解的原则对应:即 f e ( t ) f_e(t) fe(t)的方均值
C 12 = 0 C_{12}=0 C12=0,此时 f 1 ( t ) , f 2 ( t ) f_1(t), f_2(t) f1(t),f2(t)称为正交函数,满足 ∫ t 1 t 2 f 1 ( t ) ⋅ f 2 ( t ) d t \int_{t_1}^{t_2}f_1(t)\cdot f_2(t)dt t1t2f1(t)f2(t)dt
几点认识:
∙ f e ( t ) 与 f 2 ( t ) \bullet f_e(t) 与 f_2(t) fe(t)f2(t)正交,因为 f 1 ( t ) f_1(t) f1(t)中已最大限度抽出 f 2 ( t ) f_2(t) f2(t),已无 f 2 ( t ) f_2(t) f2(t)分量
∙ f 1 ( t ) \bullet f_1(t) f1(t)中还可以抽出除 f 2 ( t ) f_2(t) f2(t)以外的函数,如 f 3 ( t ) f_3(t) f3(t),此时, f 1 ( t ) = C 12 f 2 ( t ) + C 13 f 3 ( t ) + f e 1 ( t ) f_1(t) = C_{12}f_2(t) + C_{13}f_3(t)+f_{e1}(t) f1(t)=C12f2(t)+C13f3(t)+fe1(t)
f e 1 ( t ) : f_{e1}(t): fe1(t):抽出 f 2 ( t ) , f 3 ( t ) f_2(t), f_3(t) f2(t),f3(t)后剩下的误差函数
总结
∙ \bullet 两周期信号在同一周期内(同区间内)正交(即从 f 1 ( t ) f_1(t) f1(t)中抽不出 f 2 ( t ) f_2(t) f2(t)分量)的条件是 C 12 = 0 C_{12}=0 C12=0,即: ∫ t 1 t 2 f 1 ( t ) ⋅ f 2 ( t ) d t = 0 \int_{t_1}^{t_2}f_1(t)\cdot f_2(t)dt=0 t1t2f1(t)f2(t)dt=0
∙ \bullet 对一般信号在给定区间正交,而在其他区间不一定满足正交
∙ \bullet 两个信号不正交,就有相关关系,必能抽出另一信号

3. 正交函数集

任意信号f(t)可表示为n维正交函数之和:
f ( t ) ≡ C 1 g 1 ( t ) + C 2 g 2 ( t ) + . . . + C r g r ( t ) + . . . + C n g n ( t ) = ∑ r = 1 n C r g r ( t ) f(t) \equiv C_1g_1(t)+C_2g_2(t)+...+C_rg_r(t)+...+C_ng_n(t)=\sum_{r=1}^{n}C_rg_r(t) f(t)C1g1(t)+C2g2(t)+...+Crgr(t)+...+Cngn(t)=r=1nCrgr(t)
原函数 \quad \quad \quad \quad \quad \quad 近似函数
g 1 ( t ) , g 2 ( t ) , . . . , g n ( t ) g_1(t), g_2(t), ..., g_n(t) g1(t),g2(t),...,gn(t)相互正交

复变函数的正交特性

在区间 ( t 1 , t 2 ) (t_1, t_2) (t1,t2)内,若复变函数集 g r ( t ) , ( r = 0 , 1 , 2 , . . . , n ) {g_r(t)},(r=0,1,2,...,n) gr(t),(r=0,1,2,...,n)满足以下关系:
∫ t 1 t 2 g i ( t ) g j ∗ ( t ) d t = 0 i ≠ j \int_{t_1}^{t_2} g_i(t)g_j^*(t)dt=0 \quad \quad \quad i\neq j t1t2gi(t)gj(t)dt=0i=j
∫ t 1 t 2 g i ( t ) g i ∗ ( t ) d t = K i \int_{t_1}^{t_2} g_i(t)g_i^*(t)dt=K_i t1t2gi(t)gi(t)dt=Ki
则此复变函数集为正交函数集
g r ( t ) , ( r = 0 , 1 , . . . , n ) {g_r(t)},(r=0, 1, ..., n) gr(t),(r=0,1,...,n)表示f(t),求相关系数 C r = ∫ t 1 t 2 f ( t ) g r ∗ ( t ) d t ∫ t 1 t 2 g r ( t ) g r ∗ ( t ) d t C_r=\frac{\int_{t_1}^{t_2} f(t)g_r^*(t)dt}{\int_{t_1}^{t_2} g_r(t)g_r^*(t)dt} Cr=t1t2gr(t)gr(t)dtt1t2f(t)gr(t)dt, g r ∗ ( t ) 为 g r ( t ) g_r^*(t) 为 g_r(t) gr(t)gr(t)的共轭
正交的理解

4. 完备正交函数集

f ( t ) ≡ C 1 g 1 ( t ) + C 2 g 2 ( t ) + . . . + C r g r ( t ) + . . . + C n g n ( t ) = ∑ r = 1 n C r g r ( t ) f(t) \equiv C_1g_1(t)+C_2g_2(t)+...+C_rg_r(t)+...+C_ng_n(t)=\sum_{r=1}^{n}C_rg_r(t) f(t)C1g1(t)+C2g2(t)+...+Crgr(t)+...+Cngn(t)=r=1nCrgr(t)
**定义1:**当n增加时, ϵ 2 ˉ \bar {\epsilon^2} ϵ2ˉ下降,若 n → ∞ n \to \infty n,则 ϵ 2 ˉ → 0 \bar {\epsilon^2} \to 0 ϵ2ˉ0,此时 g 1 ( t ) , g 2 ( t ) , . . . , g n ( t ) g_1(t), g_2(t), ..., g_n(t) g1(t),g2(t),...,gn(t)为完备的正交函数集
**定义2:**如果存在函数x(t),有 ∫ t 1 t 2 g r ( t ) ⋅ x ( t ) d t = 0 \int_{t_1}^{t_2}g_r(t) \cdot x(t)dt=0 t1t2gr(t)x(t)dt=0,则x(t)必属于此正交函数集,原函数集 g 1 ( t ) , g 2 ( t ) , . . . , g n ( t ) g_1(t), g_2(t), ..., g_n(t) g1(t),g2(t),...,gn(t)不完备,若不存在这样的x(t),则此函数集为完备正交函数集

2. 功率信号和能量信号

定义:设i(t)为流过电阻R的电流,v(t)为R上的电压,瞬时功率为 p ( t ) = i 2 ( t ) R p(t)=i^2(t)R p(t)=i2(t)R,在一个周期内,R消耗的能量 W = ∫ − T 0 2 T 0 2 p ( t ) d t = R ∫ − T 0 2 T 0 2 i 2 ( t ) d t W=\int_{\frac{-T_0}{2}}^{\frac{T_0}{2}}p(t)dt=R\int_{\frac{-T_0}{2}}^{\frac{T_0}{2}}i^2(t)dt W=2T02T0p(t)dt=R2T02T0i2(t)dt W = 1 R ∫ − T 0 2 T 0 2 v 2 ( t ) d t W=\frac{1}{R}\int_{\frac{-T_0}{2}}^{\frac{T_0}{2}}v^2(t)dt W=R12T02T0v2(t)dt
平均功率可表示为:
P = 1 T 0 R ∫ − T 0 2 T 0 2 i 2 ( t ) d t P=\frac{1}{T_0}R\int_{\frac{-T_0}{2}}^{\frac{T_0}{2}}i^2(t)dt P=T01R2T02T0i2(t)dt P = 1 T 0 1 R ∫ − T 0 2 T 0 2 v 2 ( t ) d t P=\frac{1}{T_0}\frac{1}{R}\int_{\frac{-T_0}{2}}^{\frac{T_0}{2}}v^2(t)dt P=T01R12T02T0v2(t)dt
**定义:**一般来说,能量总是与某一物理量的平方成正比。令R=1,则在整时间域内,实信号f(t)的
能量 W = lim ⁡ T 0 → ∞ ∫ − T 0 2 T 0 2 f 2 ( t ) d t W=\lim_{T_0 \to \infty}\int_{\frac{-T_0}{2}}^{\frac{T_0}{2}}f^2(t)dt W=limT02T02T0f2(t)dt
平均功率 P = lim ⁡ T 0 → ∞ 1 T 0 ∫ − T 0 2 T 0 2 f 2 ( t ) d t P=\lim_{T_0 \to \infty}\frac{1}{T_0}\int_{\frac{-T_0}{2}}^{\frac{T_0}{2}}f^2(t)dt P=limT0T012T02T0f2(t)dt
讨论上面两个式子,一般会出现两种情况:

  1. 0 < W < ∞ 0<W<\infty 0<W<(有限值)P=0
  2. 0 < P < ∞ 0<P<\infty 0<P<(有限值)W= ∞ \infty
    满足1式的称为能量信号,满足2式的称为功率信号
    一般规律:
  3. 一般周期信号为功率信号
  4. 非周期信号,在有限区间有值,为能量信号
  5. 还有一些非周期信号,也是非能量信号,如u(t)是功率信号,tu(t)为非功率非能量信号, δ ( t ) \delta(t) δ(t)是无定义的非功率非能量信号

帕斯瓦尔定理

帕斯瓦尔定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值