信号与系统(6)- 信号频域研究的思路及正交函数集

正函数交的内容,线性系统的时域分析方法,是将复杂信号分解为简单信号之和,通过求解系统对简单信号的响应进而求解对复杂信号的响应。

在时域中,信号被分解为冲激信号的积分,根据系统对冲激信号的冲激响应,运用卷积求解系统对复杂信号的响应。

而信号的分解不仅仅可以使用冲激信号,也可以使用其它简单信号。**这一部分内容将使用正弦信号将复杂信号进行分解。并且通过对正弦信号响应的求解,进而求解对任意信号的响应。**这样便引出了信号在频域的分析和求解。

在讨论过程中将使用MATLAB进行计算或简单处理,同时可能使用Python对数据进行可视化和进一步处理。

1. 对信号在频域研究的基本思路

和分析求解时域信号的思路相似,信号在频域的分析和求解同样需要解答如下问题:

  1. 选取什么子信号?
  2. 如何将任意信号分解为一系列正弦信号之和?
  3. 如何求解系统对各个子信号的响应?
  4. 如何将各个子信号的响应进行叠加,从而合成系统对激励信号的响应?

在这四个问题中,第一个问题已经解答,使用正弦信号,而第三个问题在电路分析课程中也已经解决,即正弦稳态信号的响应,稍后将会进行回顾。所以任务的重点在于回答如何分解以及和成信号,以及如何叠加子信号的响应这两个问题上。其中傅里叶级数、傅里叶变换均在讨论信号的合成与分解,后期的拉普拉斯变换以及Z变换则在讨论信号响应的求解和分析。

2. 正交函数集的相关概念

正交函数集也可以称为标准信号集,是用来方便的分解或表示任意信号的信号集合,即:
f ( t ) = C 1 f 1 ( t ) + C 2 f 2 ( t ) + C 3 f 3 ( t ) + ⋯ + C n f n ( t ) = ∑ i = 1 n C i f i ( t ) f(t) = C_1f_1(t)+C_2f_2(t)+C_3f_3(t)+ \cdots+C_nf_n(t)=\sum_{i=1}^{n}C_if_i(t) f(t)=C1f1(t)+C2f2(t)+C3f3(t)++Cnfn(t)=i=1nCifi(t)
其中 f ( t ) f(t) f(t)为原信号,即需要被表达的信号, f i ( t ) f_i(t) fi(t)是标准信号集中的信号。

类似于标准矢量基,标准信号集同样需要满足以下三个条件

  1. 归一化:即信号集中的信号 f i ( t ) f_i(t) fi(t) f j ( t ) f_j(t) fj(t)满足 ∫ t 1 t 2 f i ( t ) f j ( t ) d t = 1 \int_{t_1}^{t_2}f_i(t)f_j(t)dt=1 t1t2fi(t)fj(t)dt=1,这可以方便在运算过程中对计算进行化简;
  2. 正交化:即信号集中的信号 f i ( t ) f_i(t) fi(t) f j ( t ) f_j(t) fj(t)满足 ∫ t 1 t 2 f i ( t ) f j ( t ) d t = 0 , i ≠ j \int_{t_1}^{t_2}f_i(t)f_j(t)dt=0,i\neq j t1t2fi(t)fj(t)dt=0i=j,这是为了方便确定组成原信号的子信号的系数,也就是上式的 C i C_i Ci。不正交的基信号的系数难以确定,因为每个基信号的系数与其他基信号均有关联。
  3. 完备性:可以用这个信号集中不同信号的线性组合表示任意信号。

完备的正交函数集一般包含无穷多个函数,如三角函数集等。但是实际应用中不可能使用无穷多个函数,因此只能使用正交函数集近似的表示任意函数。

那么当子信号前的系数 C i C_i Ci为何值时,原信号可以被最好的表达呢?回答这个问题,首先要了解如何评定信号之间的误差。

原函数与通过正交函数集表示的信号之间的误差,使用方均误差表示,即:
ε 2 ( t ) ‾ = 1 t 2 − t 1 ∫ t 1 t 2 ε 2 ( t ) d t \overline{\varepsilon^2(t)}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2}\varepsilon^2(t)dt ε2(t)=t2t11t1t2ε2(t)dt
其中 ε ( t ) = f ( t ) − ∑ i = 1 n C i f i ( t ) \varepsilon(t) = f(t)-\sum_{i=1}^{n}C_if_i(t) ε(t)=f(t)i=1nCifi(t)

通过回顾信号与系统(1)- 信号可知,上式代表着信号在一定时间区间上的功率,因此信号之间的误差,通过功率体现

为使 ε 2 ( t ) ‾ \overline{\varepsilon^2(t)} ε2(t)最小,通过对 ε 2 ( t ) ‾ = 1 t 2 − t 1 ∫ t 1 t 2 [ ( f ( t ) − ∑ i = 1 n C i f i ( t ) ] 2 d t \overline{\varepsilon^2(t)}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2}[(f(t)-\sum_{i=1}^{n}C_if_i(t)]^2dt ε2(t)=t2t11t1t2[(f(t)i=1nCifi(t)]2dt中系数 C i C_i Ci求偏导数,进而求极值可知,当系数 C i C_i Ci满足:
C i = ∫ t 1 t 2 f ( t ) f i ( t ) d t ∫ t 1 t 2 f i ( t ) f i ( t ) d t C_i = \frac{\int_{t_1}^{t_2}f(t)f_i(t)dt}{\int_{t_1}^{t_2}f_i(t)f_i(t)dt} Ci=t1t2fi(t)fi(t)dtt1t2f(t)fi(t)dt
此时的 ε 2 ( t ) ‾ \overline{\varepsilon^2(t)} ε2(t)具有最小值,即误差最小。此时的系数 C i C_i Ci也称为最佳系数 C i C_i Ci也称为 f ( t ) f(t) f(t) f i ( t ) f_i(t) fi(t)之间的相似系数。注意:只有 f i ( t ) f_i(t) fi(t)两两正交时,系数 C i C_i Ci才可以通过上式确定

如果 f ( t ) f(t) f(t) f i ( t ) f_i(t) fi(t)为复函数信号,则信号之间的误差为:
ε 2 ( t ) ‾ = 1 t 2 − t 1 ∫ t 1 t 2 ∣ ε ( t ) ∣ 2 d t = 1 t 2 − t 1 ∫ t 1 t 2 ε ( t ) ⋅ ε ∗ ( t ) d t \overline{\varepsilon^{2}(t)}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}|\varepsilon(t)|^{2} d t=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} \varepsilon(t) \cdot \varepsilon^{*}(t) d t ε2(t)=t2t11t1t2ε(t)2dt=t2t11t1t2ε(t)ε(t)dt
且最佳系数 C i C_i Ci为:
C i = ∫ t 1 t 2 f ( t ) f i ∗ ( t ) d t ∫ t 1 t 2 f i ( t ) f i ∗ ( t ) d t C_i = \frac{\int_{t_1}^{t_2}f(t)f_i^*(t)dt}{\int_{t_1}^{t_2}f_i(t)f_i^*(t)dt} Ci=t1t2fi(t)fi(t)dtt1t2f(t)fi(t)dt
C i = 0 C_i=0 Ci=0,则称 f ( t ) f(t) f(t) f i ( t ) f_i(t) fi(t)正交。

问题:为什么使用功率作为信号之间的误差?

因为如果仅仅通过信号相减的方式,有时候难以确定信号之间的差异,如下图所示得两个信号:

如果通过幅值确定,在前期,信号 f 1 ( t ) f_1(t) f1(t)明显相对基准误差要大,而后期,则明显 f 2 ( t ) f_2(t) f2(t)相对基准的误差要大。因此很难判定哪个信号距离基准更近。

3. 正交函数集(标准信号集)和标准矢量基的类比

正交函数集和标准矢量基之间有很多相似点,如下表所示:

运算矢量函数
加法: A 1 ⃗ + A 2 ⃗ \vec{A_1}+\vec{A_2} A1 +A2 f 1 ( t ) + f 2 ( t ) f_1(t)+f_2(t) f1(t)+f2(t)
标量乘法: C ⋅ A ⃗ C\cdot \vec{A} CA C ⋅ f ( t ) C \cdot f(t) Cf(t)
乘法 A ⃗ ⋅ A i ⃗ = ∣ A ⃗ ∣ A i ⃗ ∣ c o s α \vec{A}\cdot \vec{A_i} = \mid{\vec{A}} \mid{\vec{A_i}}\mid cos\alpha A Ai =A Ai cosα ∫ t 1 t 2 f ( t ) f i ( t ) d t \int_{t_1}^{t_2}f(t)f_i(t)dt t1t2f(t)fi(t)dt
正交性 A ⃗ ⋅ A i ⃗ = 0 \vec{A}\cdot \vec{A_i} =0 A Ai =0 ∫ t 1 t 2 f ( t ) f i ( t ) d t = 0 \int_{t_1}^{t_2}f(t)f_i(t)dt=0 t1t2f(t)fi(t)dt=0
归一性 A ⃗ = 1 \vec{A}=1 A =1 ∫ t 1 t 2 f ( t ) f ( t ) d t = 1 \int_{t_1}^{t_2}f(t)f(t)dt=1 t1t2f(t)f(t)dt=1
误差 ε = A ⃗ − A i ⃗ \varepsilon =\vec{A}-\vec{A_i} ε=A Ai ε = f ( t ) − f i ( t ) \varepsilon = f(t)-f_i(t) ε=f(t)fi(t)
误差代价函数 ∣ ε ∣ 2 \mid \varepsilon \mid^2 ε2 ε 2 ( t ) ‾ = 1 t 2 − t 1 ∫ t 1 t 2 ε 2 ( t ) d t \overline{\varepsilon^2(t)}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2}\varepsilon^2(t)dt ε2(t)=t2t11t1t2ε2(t)dt
系数 C i = A ⃗ ⋅ A i ⃗ A i ⃗ ⋅ A i ⃗ C_i=\frac{\vec{A}\cdot \vec{A_i}}{\vec{A_i}\cdot \vec{A_i}} Ci=Ai Ai A Ai C i = ∫ t 1 t 2 f ( t ) f i ( t ) d t ∫ t 1 t 2 f i ( t ) f i ( t ) d t C_i = \frac{\int_{t_1}^{t_2}f(t)f_i(t)dt}{\int_{t_1}^{t_2}f_i(t)f_i(t)dt} Ci=t1t2fi(t)fi(t)dtt1t2f(t)fi(t)dt C i = ∫ t 1 t 2 f ( t ) f i ∗ ( t ) d t ∫ t 1 t 2 f i ( t ) f i ∗ ( t ) d t C_i = \frac{\int_{t_1}^{t_2}f(t)f_i^*(t)dt}{\int_{t_1}^{t_2}f_i(t)f_i^*(t)dt} Ci=t1t2fi(t)fi(t)dtt1t2f(t)fi(t)dt

4. 附录:矢量运算的相关内容

4.1 单个矢量基的分解:

假设存在一个矢量 A ⃗ \vec{A} A ,以及一个基矢量 A 1 ⃗ \vec{A_1} A1 ,如下图左边所示:

如果通过基矢量 A 1 ⃗ \vec{A_1} A1 表示矢量 A ⃗ \vec{A} A ,则需要一个系数 C 1 C_1 C1对基矢量进行缩放,并且存在一个误差 ε \varepsilon ε,如上图右边所示,即:
A ⃗ = C 1 A 1 ⃗ + ε ⃗ \vec{A} = C_1\vec{A_1}+\vec{\varepsilon} A =C1A1 +ε
由图可知,最小的 ε \varepsilon ε为垂线,且该垂线大小为 ∣ A ⃗ ∣ ⋅ s i n α |\vec{A}|\cdot sin\alpha A sinα,此时:
C ∣ A 1 ⃗ ∣ = ∣ A ⃗ ∣ ⋅ c o s α C|\vec{A_1}|=|\vec{A}|\cdot cos\alpha CA1 =A cosα
即,使误差 ε \varepsilon ε最小的C为:
C = ∣ A ⃗ ∣ ⋅ c o s α ∣ A 1 ⃗ ∣ = ∣ A ⃗ ∣ ∣ A 1 ⃗ ∣ ⋅ c o s α ∣ A 1 ⃗ ∣ ∣ A 1 ⃗ ∣ ⋅ c o s 0 = A ⃗ ⋅ A 1 ⃗ A 1 ⃗ ⋅ A 1 ⃗ \begin{aligned} C &= \frac{|\vec{A}|\cdot cos\alpha}{|\vec{A_1}|} \\&= \frac{|\vec{A}||\vec{A_1}|\cdot cos\alpha}{|\vec{A_1}||\vec{A_1}|\cdot cos0} \\&=\frac{\vec{A}\cdot \vec{A_1}}{\vec{A_1}\cdot \vec{A_1}} \end{aligned} C=A1 A cosα=A1 A1 cos0A A1 cosα=A1 A1 A A1
其中,C称为矢量 A ⃗ \vec{A} A A 1 ⃗ \vec{A_1} A1 相似系数。如果** C = 0 C=0 C=0,则意味着两个矢量的夹角 α \alpha α为90度,即矢量正交。**在上述的表达中,除非基矢量 A 1 ⃗ \vec{A_1} A1 A ⃗ \vec{A} A 方向重合,即夹角为0,否则总存在一个误差。

4.2 多个矢量基的分解

在基矢量 A 1 ⃗ \vec{A_1} A1 的基础上添加一个新的基矢量 A 2 ⃗ \vec{A_2} A2 ,如下图所示:

由上图左边部分可知,若矢量 A ⃗ \vec{A} A 和两个基矢量在同一个平面上,通过平面任意方向的两个基矢量可以没有误差的表示出矢量 A ⃗ \vec{A} A , 即
A ⃗ = C 1 A 1 ⃗ + C 2 A 2 ⃗ \vec{A} = C_1\vec{A_1}+C_2\vec{A_2} A =C1A1 +C2A2
但是,由于每个基矢量的系数 C i C_i Ci不仅与特定的矢量 A i ⃗ \vec{A_i} Ai 有关,与其他基矢量也有关,很难确定。但是,如果基矢量之间两两正交,如上图右边所示,则可以证明,当:
C 1 = A 1 ⃗ ⋅ A ⃗ A 1 ⃗ ⋅ A 1 ⃗ ,   C 2 = A 2 ⃗ ⋅ A ⃗ A 2 ⃗ ⋅ A 2 ⃗ C_1 = \frac{\vec{A_1} \cdot \vec{A}}{\vec{A_1} \cdot \vec{A_1}},\space C_2 = \frac{\vec{A_2} \cdot \vec{A}}{\vec{A_2} \cdot \vec{A_2}} C1=A1 A1 A1 A  C2=A2 A2 A2 A
此时可以通过基矢量 A 1 ⃗ , A 2 ⃗ \vec{A_1},\vec{A_2} A1 ,A2 没有误差的表达矢量 A ⃗ \vec{A} A

扩展到多维基矢量,若基矢量满足两两正交,则:
A ⃗ = C 1 A 1 ⃗ + C 2 A 2 ⃗ + ⋯ + C n A n ⃗ = ∑ i = i n C i A i ⃗ \vec{A} = C_1\vec{A_1}+C_2\vec{A_2}+ \cdots + C_n\vec{A_n}=\sum_{i=i}^{n}C_i\vec{A_i} A =C1A1 +C2A2 ++CnAn =i=inCiAi
且系数为
C i = A i ⃗ ⋅ A ⃗ A i ⃗ ⋅ A i ⃗ C_i = \frac{\vec{A_i} \cdot \vec{A}}{\vec{A_i} \cdot \vec{A_i}} Ci=Ai Ai Ai A
为了简化运算,以及能够使用基矢量表示任意矢量,标准矢量基的定义如下:

  1. 归一化:标准矢量基的模等于1——这是为了使得公式的分母可以化简,简化运算;
  2. 正交化:标准矢量基两两正交——这是为了便于计算各个矢量基的系数;
  3. 完备性:可以不失真的组合出任意矢量——这是将任意矢量分解为基矢量的条件。

5. 总结

了解正交函数集是后续学习傅里叶级数、傅里叶变换的基础数学知识,因为傅里叶级数或傅里叶变换,正是通过一组正弦函数对任意信号进行表示。并且傅里叶级数或傅里叶变换的许多性质和正交性密不可分。

谢谢阅读,若有不当之处欢迎评论批评指正!

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值