正函数交的内容,线性系统的时域分析方法,是将复杂信号分解为简单信号之和,通过求解系统对简单信号的响应进而求解对复杂信号的响应。
在时域中,信号被分解为冲激信号的积分,根据系统对冲激信号的冲激响应,运用卷积求解系统对复杂信号的响应。
而信号的分解不仅仅可以使用冲激信号,也可以使用其它简单信号。**这一部分内容将使用正弦信号将复杂信号进行分解。并且通过对正弦信号响应的求解,进而求解对任意信号的响应。**这样便引出了信号在频域的分析和求解。
在讨论过程中将使用MATLAB进行计算或简单处理,同时可能使用Python对数据进行可视化和进一步处理。
1. 对信号在频域研究的基本思路
和分析求解时域信号的思路相似,信号在频域的分析和求解同样需要解答如下问题:
- 选取什么子信号?
- 如何将任意信号分解为一系列正弦信号之和?
- 如何求解系统对各个子信号的响应?
- 如何将各个子信号的响应进行叠加,从而合成系统对激励信号的响应?
在这四个问题中,第一个问题已经解答,使用正弦信号,而第三个问题在电路分析课程中也已经解决,即正弦稳态信号的响应,稍后将会进行回顾。所以任务的重点在于回答如何分解以及和成信号,以及如何叠加子信号的响应这两个问题上。其中傅里叶级数、傅里叶变换均在讨论信号的合成与分解,后期的拉普拉斯变换以及Z变换则在讨论信号响应的求解和分析。
2. 正交函数集的相关概念
正交函数集也可以称为标准信号集,是用来方便的分解或表示任意信号的信号集合,即:
f ( t ) = C 1 f 1 ( t ) + C 2 f 2 ( t ) + C 3 f 3 ( t ) + ⋯ + C n f n ( t ) = ∑ i = 1 n C i f i ( t ) f(t) = C_1f_1(t)+C_2f_2(t)+C_3f_3(t)+ \cdots+C_nf_n(t)=\sum_{i=1}^{n}C_if_i(t) f(t)=C1f1(t)+C2f2(t)+C3f3(t)+⋯+Cnfn(t)=i=1∑nCifi(t)
其中 f ( t ) f(t) f(t)为原信号,即需要被表达的信号, f i ( t ) f_i(t) fi(t)是标准信号集中的信号。
类似于标准矢量基,标准信号集同样需要满足以下三个条件:
- 归一化:即信号集中的信号 f i ( t ) f_i(t) fi(t)和 f j ( t ) f_j(t) fj(t)满足 ∫ t 1 t 2 f i ( t ) f j ( t ) d t = 1 \int_{t_1}^{t_2}f_i(t)f_j(t)dt=1 ∫t1t2fi(t)fj(t)dt=1,这可以方便在运算过程中对计算进行化简;
- 正交化:即信号集中的信号 f i ( t ) f_i(t) fi(t)和 f j ( t ) f_j(t) fj(t)满足 ∫ t 1 t 2 f i ( t ) f j ( t ) d t = 0 , i ≠ j \int_{t_1}^{t_2}f_i(t)f_j(t)dt=0,i\neq j ∫t1t2fi(t)fj(t)dt=0,i=j,这是为了方便确定组成原信号的子信号的系数,也就是上式的 C i C_i Ci。不正交的基信号的系数难以确定,因为每个基信号的系数与其他基信号均有关联。
- 完备性:可以用这个信号集中不同信号的线性组合表示任意信号。
完备的正交函数集一般包含无穷多个函数,如三角函数集等。但是实际应用中不可能使用无穷多个函数,因此只能使用正交函数集近似的表示任意函数。
那么当子信号前的系数 C i C_i Ci为何值时,原信号可以被最好的表达呢?回答这个问题,首先要了解如何评定信号之间的误差。
原函数与通过正交函数集表示的信号之间的误差,使用方均误差表示,即:
ε 2 ( t ) ‾ = 1 t 2 − t 1 ∫ t 1 t 2 ε 2 ( t ) d t \overline{\varepsilon^2(t)}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2}\varepsilon^2(t)dt ε2(t)=t2−t11∫t1t2ε2(t)dt
其中 ε ( t ) = f ( t ) − ∑ i = 1 n C i f i ( t ) \varepsilon(t) = f(t)-\sum_{i=1}^{n}C_if_i(t) ε(t)=f(t)−∑i=1nCifi(t)。
通过回顾信号与系统(1)- 信号可知,上式代表着信号在一定时间区间上的功率,因此信号之间的误差,通过功率体现。
为使 ε 2 ( t ) ‾ \overline{\varepsilon^2(t)} ε2(t)最小,通过对 ε 2 ( t ) ‾ = 1 t 2 − t 1 ∫ t 1 t 2 [ ( f ( t ) − ∑ i = 1 n C i f i ( t ) ] 2 d t \overline{\varepsilon^2(t)}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2}[(f(t)-\sum_{i=1}^{n}C_if_i(t)]^2dt ε2(t)=t2−t11∫t1t2[(f(t)−∑i=1nCifi(t)]2dt中系数 C i C_i Ci求偏导数,进而求极值可知,当系数 C i C_i Ci满足:
C i = ∫ t 1 t 2 f ( t ) f i ( t ) d t ∫ t 1 t 2 f i ( t ) f i ( t ) d t C_i = \frac{\int_{t_1}^{t_2}f(t)f_i(t)dt}{\int_{t_1}^{t_2}f_i(t)f_i(t)dt} Ci=∫t1t2fi