深度学习入门09-从感知机到神经网络

本文从感知机入手,介绍了神经网络的基本结构和工作原理,包括输入、隐藏和输出层的定义,以及激活函数的概念,为后续学习神经网络权重学习打下基础。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在之前的文章中,我们学习了感知机。在之后的几期文章中,我们主要学习一下神经网络的基础知识。

0 引言

通过之前的学习,我们知道,即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。但是,感知机却有一个最重要的问题,就是感知机各个节点对应的权重都需要人为地设定,比如我们使用感知机实现基本逻辑门电路功能时就是人工计算出来的。比如,我们结合与门、或门的真值表人工决定了合适的权重。对于一个简单的逻辑功能实现,节点较少,我们可以手工设定,但是对于复杂的功能呢?我们可以选择使用多层感知机实现,但这样必然增加了很多参数,我们再人工确定各个参数值是一件非常麻烦的事情。能否通过某种方式可以自动地完成设定权重的工作呢?

此时,神经网络粉墨登场,因为神经网络的一个重要性质是它可以自动地从数据中学习到合适的权重参数。在本篇文章中,我们会先介绍神经网络的概要。在之后的文章中,我们将了解如何从数据中学习权重参数。

1 神经网络的例子

用图来表示神经网络的话,就如下图所示:

我们把最左边一列称为输入(Input)层,最右边一列称为输出(Output)层,中间的一列称为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值