在当今的芯片设计中,模拟-数字转换器(ADC)扮演着重要角色。随着汽车雷达、移动设备和高性能计算应用对性能要求的不断提高,设计团队不得不采用22nm甚至更先进的工艺节点。但这也带来了新的挑战——如何在纳米工艺下确保设计的高良率?
传统方法的困境
过去,设计团队通常采用"暴力模拟"的方法:运行数百万次蒙特卡洛仿真来覆盖所有可能的工艺、电压和温度(PVT)变异情况。但在22nm FDSOI工艺下,这种方法变得不切实际。以一个时间域两步ADC为例:
- 仅比较器锁存模块就需要考虑4个工艺角
- 电压变化范围±5%
- 温度范围-40°C到125°C
如果完全采用传统方法,需要运行数千万次仿真。实际上,团队只能运行3200次仿真,然后通过外推法估算4-sigma性能。这种方法不仅耗时,而且准确性难以保证。
创新解决方案:两阶段验证法
针对这一挑战,研究团队开发了一种新型的两阶段验证方法:
第一阶段:关键模块分析
- 设计师首先确定影响整体性能的关键指标(如比较器的偏移标准差)
- 使用机器学习工具快速识别最坏情况的工作角
- 通过敏感性分析找出对变异最敏感的器件
在这个案例中,团队发现比较器锁存的偏移标准差达到7.2ps,超过了ADC的5ps最低有效位要求。更关键的是,偏移分布并非高