活着 死亡

 转:   

刚刚接通了一位采访过我的四川记者朋友的电话,她刚刚从绵竹退下来,这个娇小的丫头在电话里和我讲了她眼见的情况,她只用了四个字形容,就是:“世界末日。”她说她几乎无法工作,眼泪就没有停过,太惨了,一片一片的废墟,到处是哭喊的声音,救援队发了疯一样的救人,然而往往救不了,跟着去的摄影只了拍一张照片,就扔下相机去帮忙,因为那情景让你不可能站着看着。

她和我说,她在一个学校现场看到了她永远不会忘记的一幕,学校的主教学楼坍塌了大半,当时正在上课,几乎有100多个孩子被压在了下面。全是小学生。一些似乎是消防队员的战士在废墟中已经抢出了十几个孩子和三十多具尸体,看着那些小小的,带着红领巾却再也无法睁开眼睛的孩子,她说她突然觉得自己说话的勇气都没有了。

然而就在抢救到最关键的时候,突然教学楼的废墟因为余震和机吊操作发生了移动,随时有可能发生再次坍塌,再进入废墟救援十分的危险,几乎等于送死,当时的消防指挥下了死命令,让钻入废墟的人马上撤出来,要等到坍塌稳定后再进入,然而此时,几个刚才废墟出来的战士大叫又发现了孩子。

几个战士听见了就不管了,转头又要往里钻,这时坍塌就发生了,一块巨大的混凝土块眼看就在往下陷,那几个往里转的战士马上给其他的战士死死拖住,两帮人在上面拉扯,最后废墟上的战士们被人拖到了安全地带,一个刚从废墟中带出了一个孩子的战士就跪了下来大哭,对拖着他的人说你们让我再去救一个,求求你们让我再去救一个!我还能再救一个!

看到这个情形所有人都哭了,然而所有人都无计可施,只眼睁睁的看着废墟第二次坍塌。后来,那几个小孩子还是给挖出来了,但是却只有一个还活着,看着那些个年轻的战士抱着那个幸存的小女孩在雨中大叫着跑向救援所在的帐篷的时候,她已经泣不成声。

我无法想象这在电话中已经如此惊心动魄的情形在当时是怎么样一个悲壮的场面,我只知道这是真实的,而且,在现在,在震中地区,这样的事情还在重复的发生着,就在今夜,我坐在舒适的房间内,第一次意识到我是否应该做些什么,虽然我不可能到现场去,但是我是否应该做一些力所能及的事情?

于是我眼含着眼泪,首先发了这一篇博文,我知道这篇博文无法带来什么实际的帮助,但是,这是我想到的最便捷的,我所能立即做到的第一件事情,一篇文虽然没有力量,但是至少我可以让更多的人关注这件事情。只有完成了第一件事情,才有第二件,第三件。

### 使用R语言分析NHANES死亡数据 为了有效处理和分析来自NHANES(National Health and Nutrition Examination Survey)的死亡数据,可以采用一系列特定的方法和技术。以下是具体的操作指南: #### 数据准备与加载 首先,确保安装并加载必要的包用于数据分析。 ```r install.packages("survival") # 生存分析所需库 library(survival) # 加载NHANES死亡数据集 load("path_to_your_data.RData") # 替换为实际路径 ``` #### 预处理阶段 对原始数据进行清洗和预处理是至关重要的一步。这通常涉及缺失值处理、变量转换以及创建生存对象等操作。 ```r # 假设'data'是一个包含参与者信息的数据框 data <- na.omit(data) # 删除含有NA值的行 # 创建Surv对象表示存活时间及其状态(0=活着, 1=已故) survObj <- Surv(time = data$followup_years, event = data$status) ``` #### 统计描述 计算全因死亡率和心血管疾病特异性死亡率可以通过简单的统计汇总实现。 ```r total_deaths <- sum(data$followup_years) all_cause_mortality_rate <- total_deaths / person_years * 1e4 # 转换成每万人年份单位[^1] cardiovascular_deaths <- sum(subset(data, cause_of_death == "Cardiovascular Disease")$status == 1) cvd_person_years <- sum(subset(data, !is.na(cause_of_death))$followup_years[data$cause_of_death == "Cardiovascular Disease"]) cvd_specific_mortality_rate <- cardiovascular_deaths / cvd_person_years * 1e4 # 同样转成每万人年的形式 ``` #### Cox回归建模 构建多因素调整后的Cox比例风险模型来评估不同协变量对于结局的影响程度。 ```r cox_model <- coxph(survObj ~ age + sex + bmi + smoking_status + ..., data=data) summary(cox_model)$coefficients[, c("exp(coef)", "se(coef)", "z", "Pr(>|z|)") ] confint(cox_model)[,"2.5 %"] # 获取95% CI下限 confint(cox_model)[,"97.5 %"] # 获取95% CI上限 ``` 上述代码片段展示了如何基于R语言执行基本的NHANES死亡数据分析流程,包括但不限于数据读取、清理、特征工程及高级统计推断等方面的工作[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2u+

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值