根据点、旋转轴、旋转角度,计算点旋转之后的位置

Point Util::Rotate(Point p, double angle, double x, double y, double z) //注意这里的(x,y,z)是单位化的旋转轴向量
{
    double m[3][3];
    //D3DXVec3Normalize();
    //angle = 1.57;
    double u = x;
    double v = y;
    double w = z;

    m[0][0] = cosf(angle) + (u * u) * (1 - cosf(angle));
    m[0][1] = u * v * (1 - cosf(angle)) + w * sinf(angle);
    m[0][2] = u * w * (1 - cosf(angle)) - v * sinf(angle);
    //m[0][3] = 0;

    m[1][0] = u * v * (1 - cosf(angle)) - w * sinf(angle);
    m[1][1] = cosf(angle) + v * v * (1 - cosf(angle));
    m[1][2] = w * v * (1 - cosf(angle)) + u * sinf(angle);
    //m[1][3] = 0;

    m[2][0] = u * w * (1 - cosf(angle)) + v * sinf(angle);
    m[2][1] = v * w * (1 - cosf(angle)) - u * sinf(angle);
    m[2][2] = cosf(angle) + w * w * (1 - cosf(angle));
    //m[2][3] = 0;

    /*m[3][0] = 0;
    m[3][1] = 0;
    m[3][2] = 0;
    m[3][3] = 1;*/

    Vector3d temp(p.x, p.y, p.z);
    Matrix3d mt(3,3);
    mt(0, 0) = m[0][0];
    mt(0, 1) = m[0][1];
    mt(0, 2) = m[0][2];
    mt(1, 0) = m[1][0];
    mt(1, 1) = m[1][1];
    mt(1, 2) = m[1][2];
    mt(2, 0) = m[2][0];
    mt(2, 1) = m[2][1];
    mt(2, 2) = m[2][2];

    Vector3d temp1 = mt * temp;

    Point pp;
    pp.x = temp1[0];
    pp.y = temp1[1];
    pp.z = temp1[2];

    return pp;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值