NTU+RGBD 60类动作(后10个为双人的)

0: 喝水

1: 吃饭/零食

2: 刷牙

3: 梳头

4: 扔

5: 捡

6: 抛

7: 坐下

8: 站立(从坐着)

9: 鼓掌

10: 读书

11: 写字

12: 撕纸

13: 穿外套

14: 脱外套

15: 穿鞋

16: 脱鞋

17: 带眼镜

18: 摘眼镜

19: 戴帽子

20: 摘帽子

21: 庆祝(举起双手狂欢)

22: 摆手

23: 踢东西

24: 把东西放口袋里/从口袋里拿一些东西

25: 单脚跳

26: 跳起来

27: 打电话/接电话

28: 玩手机/平板电脑

29: 在键盘上打字

30: 用手指指着某物

31: 自拍

32: 检查时间(来自手表)

33: 两只手一起搓

34: 点头

35: 摇头

36: 抹脸

37: 敬礼

38: 合掌(阿弥陀佛)

39: 双手交叉放在胸前(说停)

40: 打喷嚏/咳嗽

41: 蹒跚(来回的走动)

42: 摔倒

43: 触头(头痛)

44: 胸部(胃痛/心脏痛)

45: 回触摸(背痛)

46: 触摸颈部(颈痛)

47: 恶心或呕吐情况

48: 用电扇(用手或纸)/感觉温暖(扇风)

49: 拳击/扇其他人

50: 踢其他人

51: 推其他人

52: 拍其他人的后背,

53: 用手指着别人

54: 拥抱对方

55: 给别人一些东西

56: 'touch other persons pocket',

57: 握手

58: 走向对方

59: 彼此分开

### 关于NTU RGB-D 60 数据集的可视化 对于 NTU RGB-D 60 数据集的3D可视化,可以采用多种工具和技术来实现。Python 中 Matplotlib 库提供了强大的绘图功能,能够创建高质量的三维图形[^2]。 #### 使用Matplotlib进行3D骨骼数据可视化 为了更好地理解动作姿态,可以通过绘制不同时间点上的骨架节点及其连接线段来进行动态展示。下面是一个简单的例子说明如何加载并显示单帧内的身体结构: ```python import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt def plot_skeleton(skel_data, ax=None): if not ax: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Define connections between joints (this is just an example set of edges) joint_connections = [ (0, 1), (1, 20), (20, 2), ... # Add all other relevant pairs here based on dataset documentation. ] xs, ys, zs = skel_data.T for start_idx, end_idx in joint_connections: x_line = [xs[start_idx], xs[end_idx]] y_line = [ys[start_idx], ys[end_idx]] z_line = [zs[start_idx], zs[end_idx]] ax.plot(x_line, y_line, z_line) ax.scatter(xs, ys, zs) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') return ax if __name__ == "__main__": sample_frame = np.loadtxt("path_to_sample_skeleton_file") # Load skeleton data from file plot_skeleton(sample_frame).show() ``` 此脚本定义了一个 `plot_skeleton` 函数用于接收一桢内的人体关节坐标数组作为输入参数,并通过调用 Matplotlib 来渲染该时刻下的空间位置关系。注意这里假设已经获取到了正确的骨骼序列文件路径以及相应的格式解析方式。 另外,在 MATLAB 平台上也有成熟的方案可供参考。具体来说,需要先安装特定版本(如MATLAB R2016a),接着按照官方指南解压并导入原始 `.skeleton` 文件夹中的二进制记录[^3]。 最后值得注意的是,除了上述两种主流编程环境外,还有许多开源项目致力于简化这一过程,比如 PyTorch Geometric Temporal 提供了专门针对时空图神经网络的数据预处理模块,可以直接应用于此任务之上[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值