Spark1.6.3 on Yarn 调度总览

本文介绍了Spark在Yarn上运行时的调度流程,从Stage划分、TaskSet选择、Executor选取到Task调度的详细过程。默认调度策略为FIFO,同时探讨了Delay Scheduling策略和Executor的分配方式。
摘要由CSDN通过智能技术生成

先放图再分析, 估计后续的2.0版本也差不多,应该不会有大变动

0. Scheduling OverView


1. Stage选择

DAGScheduler.scala接收到一个Job提交后,会根据computing chain和 RDDs之间的dependencies自后向前建立DAG图并划分若干stages。然后从前向后依次提交stage,因为stages之间具有依赖关系,因此stage的调度可以看成是FIFO模式

2. TaskSet选择

选择好stage之后,会根据该stage中最后一个RDD的partitions数量决定tasks的数量,并将这些tasks封装成一个TaskSetManger,TaskSetManager负责管理每个task的状态;然后将Manager加入SchedulerBuilder.scala中,它主要负责多个TaskSets的调度,调度方法有FIFO和Fair两种,默认为FIFO;最后产生sortedTaskSets。

3. Executor选择

选择好taskSet之后,并且有资源时,就可以选择Executor了。对于多个Executors,TaskSchedulerImpl.scala会先将它们随机打乱,这是为了防止总是优先选择前几个Executor;然后采用轮转的方法轮流选择Executor

4. task调度

选择好taskSet和Executor之后, 会根据taskSet中每个task对locality的要求以及Delay Scheduling策略与该Executor进行匹配,匹配成功则表示Driver端调度成功,接下来会与Executor通信,进行实际调度。

5. Executor调度

Executor调度是最早进行的,只有所有Executor都部署好了,才能运行任务(除非是动态资源分配-Dynamic Resource Allocation)。因为Spark运行在Yarn之上,那么每个executor被封装在一个Container里面。Container的调度有FIFO,Fair以及Capacity 三种

ToDo:Job之间的调度规则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值