先放图再分析, 估计后续的2.0版本也差不多,应该不会有大变动
0. Scheduling OverView
1. Stage选择
DAGScheduler.scala接收到一个Job提交后,会根据computing chain和 RDDs之间的dependencies自后向前建立DAG图并划分若干stages。然后从前向后依次提交stage,因为stages之间具有依赖关系,因此stage的调度可以看成是FIFO模式
2. TaskSet选择
选择好stage之后,会根据该stage中最后一个RDD的partitions数量决定tasks的数量,并将这些tasks封装成一个TaskSetManger,TaskSetManager负责管理每个task的状态;然后将Manager加入SchedulerBuilder.scala中,它主要负责多个TaskSets的调度,调度方法有FIFO和Fair两种,默认为FIFO;最后产生sortedTaskSets。
3. Executor选择
选择好taskSet之后,并且有资源时,就可以选择Executor了。对于多个Executors,TaskSchedulerImpl.scala会先将它们随机打乱,这是为了防止总是优先选择前几个Executor;然后采用轮转的方法轮流选择Executor
4. task调度
选择好taskSet和Executor之后, 会根据taskSet中每个task对locality的要求以及Delay Scheduling策略与该Executor进行匹配,匹配成功则表示Driver端调度成功,接下来会与Executor通信,进行实际调度。
5. Executor调度
Executor调度是最早进行的,只有所有Executor都部署好了,才能运行任务(除非是动态资源分配-Dynamic Resource Allocation)。因为Spark运行在Yarn之上,那么每个executor被封装在一个Container里面。Container的调度有FIFO,Fair以及Capacity 三种
ToDo:Job之间的调度规则