试证明对于对称阵 A A A 的二次型 f ( x ) = x T A x f(x)=\mathrm x^TA\mathrm x f(x)=xTAx ,当 f ( x ) f(x) f(x) 取得极大值时, x \mathrm x x 为对称阵 A A A 的最大的特征值对应的特征向量。
采用拉格朗日乘子法求解带约束的二次型问题:
maximize x T A x subject to x T x = 1 \text{maximize}\qquad\mathrm x^TA\mathrm x\\ \text {subject to}\qquad \mathrm x^T\mathrm x=1 maximizexT