带约束的二次型的极大值证明

该博客通过拉格朗日乘子法证明了在约束条件下,对称矩阵A的二次型f(x)=xTAx取极大值时,x是A的最大特征值对应的特征向量。详细推导了拉格朗日函数的偏导数,并解释了为何最大值对应最大特征值。
摘要由CSDN通过智能技术生成

试证明对于对称阵 A A A 的二次型 f ( x ) = x T A x f(x)=\mathrm x^TA\mathrm x f(x)=xTAx ,当 f ( x ) f(x) f(x) 取得极大值时, x \mathrm x x 为对称阵 A A A 的最大的特征值对应的特征向量。

采用拉格朗日乘子法求解带约束的二次型问题:
maximize x T A x subject to x T x = 1 \text{maximize}\qquad\mathrm x^TA\mathrm x\\ \text {subject to}\qquad \mathrm x^T\mathrm x=1 maximizexT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值