二次型优化问题 - 1 - 问题描述

在各种场景可能都会遇到需要求解多元二次函数极值的问题,本系列文章介绍相关的计算方法,核心内容为共轭梯度法。

本文介绍问题定义。

问题定义

  • 多元二次多项式,维度为 n n n,那么可以用以下公式描述该函数:

f ( x 1 , x 2 , x 3 , . . . , x n ) = a 1 , 1 x 1 2 + a 1 , 2 x 1 x 2 + a 1 , 3 x 1 x 3 + ⋯ + a 1 , n x 1 x n + a 2 , 1 x 2 x 1 + a 2 , 2 x 2 2 + a 2 , 3 x 2 x 3 + ⋯ + a 2 , n x 2 x n + ⋯ + a n , n x n 2 + b 1 x 1 + b 2 x 2 + ⋯ + b n x n + c f({x_1},{x_2},{x_3},...,{x_n}) = {a_{1,1}}x_1^2 + {a_{1,2}}{x_1}{x_2} + {a_{1,3}}{x_1}{x_3} + \cdots + {a_{1,n}}{x_1}{x_n} + {a_{2,1}}x_2{x_1} + {a_{2,2}}{x_2^2} + {a_{2,3}}{x_2}{x_3} + \cdots + {a_{2,n}}{x_2}{x_n} + \cdots + {a_{n,n}}x_n^2+{b_1}x_1+{b_2}x_2+\cdots+{b_n}x_n+c f(x1,x2,x3,...,xn)=a1,1x12+a1,2x1x2+a1,3x1x3++a1,nx1xn+a2,1x2x1+a2,2x22+a2,3x2x3++a2,nx2xn++an,nxn2+b1x1+b2x2++bnxn+c

其中 a i , j a_{i,j} ai,j为二次项系数,共有 n 2 n^2 n2项, 1 ≤ i , j ≤ n 1 \le i,j \le n 1i,jn,且所有的 a a a不全为0,即 ∃ a i , j ≠ 0 \exists a_{i,j} \ne 0 ai,j=0;

b k b_k bk为一次项系数,共 n n n项, 1 ≤ k ≤ n 1 \le k \le n 1kn;

c c c为常数项。

  • f ( x ) = [ x 1 , x 2 , ⋯   , x n ] T f({\bf{x}}) = {[{x_1},{x_2}, \cdots ,{x_n}]^T} f(x)=[x1,x2,,xn]T ,则上述函数可以写作二次型的形式:

f ( x 1 , x 2 , x 3 , . . . , x n ) = f ( x ) = x T A x + b T x + c f({x_1},{x_2},{x_3},...,{ x_n}) = f({\bf{x}}) = {\bf{x^T} }\bf{A}{\bf{x} } + { {\bf{b} }^T}{\bf{x} } + c f(x1,x2,x3,...,xn)=f(x)=xTAx+bTx+c

转化过程中 A , b \bf{A},\bf{b} A,b满足:

A {\bf{A} } A n n n阶对称方阵, A i , j = a i , j { { \bf { A } } _ { i , j } } = { a _ { i , j } } Ai,j=ai,j

因为 ∃ a i , j ≠ 0 \exists a_{i,j} \ne 0 ai,j=0 A \bf{A} A不为零矩阵

b i = b i \bf{b}_i=b_i bi=bi

  • 为了后续计算简便,我们将二次型稍作改动:

f ( x ) = 1 2 x T A x − b T x + c f({\bf{x} }) = \frac{1}{2}{\bf{x^TAx} } - { {\bf{b} }^{\bf{T} } }{\bf{x} } + {\bf{c} } f(x)=21xTAxbTx+c

  • 我们的目标就是寻找该函数的极值点的坐标,我们把该目标称为 x ∗ \bf{x^*} x

简要分析

  • 当前问题其实就是多元二次方程极值求解的问题
  • 此类函数在函数定义域内处处连续可导
  • 极值点必然处于导数为0的位置

需要解决的问题

  • 同一个多元二次方程表示成二次型的参数 A , b , c \bf{A},\bf{b},\bf{c} A,b,c是否唯一,如果不唯一该如何设置,为什么如此设置
  • 该问题是否存在导数为0的点
  • 导数为0的点如何求解
  • 导数为0的点是否就是极值点
  • 对于给定的二次型如何判断是否可优化
  • 对于可优化的二次型都有什么方法寻找极值点
  • 寻找极值点的方法们都有哪些优缺点,为什么需要提出共轭梯度法
  • 代数解法,梯度下降法介绍与分析
  • 共轭梯度法介绍与分析
  • 共轭梯度法的相关证明
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值