Python图像处理库PIL的ImageEnhance模块介绍

ImageEnhance模块提供了一些用于图像增强的类。

一、ImageEnhance模块的接口

所有的增强类都实现了一个通用的接口,包括一个方法:

enhancer.enhance(factor) image

该方法返回一个增强过的图像。变量factor是一个浮点数,控制图像的增强程度。变量factor1将返回原始图像的拷贝;factor值越小,颜色越少(亮度,对比度等),更多的价值。对变量facotr没有限制。

二、ImageEnhance模块的Color

颜色增强类用于调整图像的颜色均衡,在某种程度上类似控制彩色电视机。该类实现的增强接口如下:

ImageEnhance.Color(image) Color enhancer instance

创建一个增强对象,以调整图像的颜色。增强因子为0.0将产生黑白图像;为1.0将给出原始图像。

ImageEnhance.Color类的实例:

>>> from PIL import Image, ImageEnhance

>>> im02 =Image.open("D:\\Code\\Python\\test\\img\\test02.jpg")

>>> im_1 = ImageEnhance.Color(im02).enhance(0.1)

>>> im_5 = ImageEnhance.Color(im02).enhance(0.5)

>>> im_8 =ImageEnhance.Color(im02).enhance(0.8)

>>> im_20 = ImageEnhance.Color(im02).enhance(2.0)

从前面的介绍,我们可以得知函数enhance()的参数factor决定着图像的颜色饱和度情况。从0.10.5,再到0.82.0,图像的颜色饱和度依次增大。

图像im_1如下:

                             

图像im_5如下:

 

图像im_8如下:

 

图像im_20如下:

 

三、ImageEnhance模块的Brightness

亮度增强类用于调整图像的亮度。

ImageEnhance.Brightness(image) Brightnessenhancer instance

创建一个调整图像亮度的增强对象。增强因子为0.0将产生黑色图像;为1.0将保持原始图像。

ImageEnhance.Brightness类的实例:

>>> from PIL import Image, ImageEnhance

>>> im02 =Image.open("D:\\Code\\Python\\test\\img\\test02.jpg")

>>> im_2 = ImageEnhance.Brightness(im02).enhance(0.2)

>>> im_5 = ImageEnhance.Brightness(im02).enhance(0.5)

>>> im_8 =ImageEnhance.Brightness (im02).enhance(0.8)

>>> im_20 =ImageEnhance.Brightness (im02).enhance(2.0)

该函数enhance()的参数factor决定着图像的亮度情况。从0.10.5,再到0.82.0,图像的亮度依次增大。

图像im_2如下:

 

图像im_5如下:

 

图像im_8如下:

 

图像im_20如下:

 

四、ImageEnhance模块的Contrast

对比度增强类用于调整图像的对比度。类似于调整彩色电视机的对比度。

ImageEnhance.Contrast(image) Contrast enhancer instance

创建一个调整图像对比度的增强对象。增强因子为0.0将产生纯灰色图像;为1.0将保持原始图像。

ImageEnhance.Contrast类的实例:

>>> from PIL import Image, ImageEnhance

>>> im02 =Image.open("D:\\Code\\Python\\test\\img\\test02.jpg")

>>> im_1 = ImageEnhance.Contrast(im02).enhance(0.1)

>>> im_5 = ImageEnhance.Contrast(im02).enhance(0.5)

>>> im_8 =ImageEnhance.Contrast (im02).enhance(0.8)

>>> im_20 =ImageEnhance.Contrast (im02).enhance(2.0)

该函数enhance()的参数factor决定着图像的对比度情况。从0.10.5,再到0.82.0,图像的对比度依次增大。

图像im_1如下:

 

图像im_5如下:

 

图像im_8如下:

 

图像im_20如下:

 

五、ImageEnhance模块的Sharpness

锐度增强类用于调整图像的锐度。

ImageEnhance.Sharpness(image) Sharpness enhancer instance

创建一个调整图像锐度的增强对象。增强因子为0.0将产生模糊图像;为1.0将保持原始图像,为2.0将产生锐化过的图像。

ImageEnhance.Sharpness类的实例:

>>> from PIL import Image, ImageEnhance

>>> im02 =Image.open("D:\\Code\\Python\\test\\img\\test02.jpg")

>>> im_0 = ImageEnhance.Sharpness(im02).enhance(0.0)

>>> im_20 =ImageEnhance.Sharpness (im02).enhance(2.0)

>>> im_30 =ImageEnhance.Sharpness (im02).enhance(3.0)

该函数enhance()的参数factor决定着图像的锐度情况。从0.02.0,再到3.0,图像的锐度依次增大。

图像im_0如下:

 

图像im_20如下:

 

图像im_30如下:

 

对于Python图像处理中的图像增强,可以使用各种和技术来实现。以下是几种常用的方法: 1. 调整亮度和对比度:可以使用OpenCV中的`cv2.convertScaleAbs()`函数来调整图像的亮度和对比度。通过调整像素值的范围,可以增强图像的整体明暗程度和视觉对比度。 ```python import cv2 def enhance_image_brightness_contrast(image, brightness, contrast): enhanced_image = cv2.convertScaleAbs(image, alpha=contrast, beta=brightness) return enhanced_image ``` 2. 直方图均衡化:直方图均衡化是一种通过重新分布图像的灰度级来增强图像对比度的方法。可以使用OpenCV中的`cv2.equalizeHist()`函数来实现。 ```python import cv2 def enhance_image_histogram_equalization(image): gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) equalized_image = cv2.equalizeHist(gray_image) return equalized_image ``` 3. 锐化滤波:锐化滤波可以增强图像的边缘和细节。可以使用OpenCV中的`cv2.filter2D()`函数来应用锐化滤波器。 ```python import cv2 import numpy as np def enhance_image_sharpening(image): kernel = np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]]) sharpened_image = cv2.filter2D(image, -1, kernel) return sharpened_image ``` 4. 增强色彩饱和度:可以使用PILPython Imaging Library)中的`ImageEnhance`模块来增强图像的色彩饱和度。 ```python from PIL import ImageEnhance def enhance_image_saturation(image, saturation_factor): enhancer = ImageEnhance.Color(image) enhanced_image = enhancer.enhance(saturation_factor) return enhanced_image ``` 以上是一些常见的图像增强方法,你可以根据具体需求选择适合的方法来增强图像。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值