1.部署 InternLM2-Chat-1.8B
模型核心步骤
(1)按需创建和配置开发机
可以根据使用场景对于GPU算力、显存的需求,按需开发机。本次申请10% A100 * 1即可用于微小规模训练。
镜像选用Cuda11.7-conda即可,GPU硬件的驱动决定了对于Cuda版本的支持。如需要更高版本的Cuda驱动,可能要升级底层GPU硬件驱动
(2)环境配置
studio-conda -o internlm-base -t demo
//studio-conda是定制化脚本或者集成开发环境(IDE)中封装的命令,可以简化对Conda环境的操作流程;
//基于一个基础环境模板internlm-base
来新建一个名为demo的环境
或者等效配置方案
# conda create -n demo python==3.10 -y //使用conda命令创建一个名为demo的环境,并在其中安装确切版本为3.10的Python解释器,同时自动确认所有提示而无需用户交互 # conda activate demo //激活环境 # conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia //在conda环境下安装特定版本的PyTorch相关库及其CUDA支持。(1)安装PyTorch版本为2.0.1(2)安装torchvision版本为0.15.2(是PyTorch的一个重要附加库,包含计算机视觉相关的数据集、模型和 transforms)(3)安装torchaudio版本为2.0.2(PyTorch的音频处理库)(4)安装与CUDA 11.7兼容的PyTorch版本,指定从PyTorch的官方频道(channel)下载并安装这些包,指定了另一个频道nvidia从中获取到与NVIDIA CUDA toolkit配合的优化版本或者其他与NVIDIA相关的软件包
(3)进入conda
环境,完成环境包的安装
conda activate demo //激活demo环境
pip install huggingface-hub==0.17.3
pip install transformers==4.34
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2
pip install matplotlib==3.8.3
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99
(4)下载 InternLM2-Chat-1.8B
模型
按路径创建文件夹,并进入到对应文件目录中
mkdir -p /root/demo //make directory创建目录,-parents确保路径所有父目录都存在,即新建/root/demo目录
touch /root/demo/cli_demo.py //touch如果文件不存在,则会创建一个新文件
touch /root/demo/download_mini.py //新建一个空Python脚本文件
cd /root/demo //change directory” 的缩写,用于切换当前工作目录到指定位置