空间域和变换域(以傅里叶变换为例)

空间域(spatial domain)

空间域,或称图像空间,是以图像左上为原点,横为y竖为x的二维平面。
这里写图片描述

变换域

在有些情况下,通过变换输入图像来表达处理任务,在变换域执行处理任务,然后再反变换到空间域会更好,比如使用傅里叶变换将图像转换到频率域进行滤波,再转换回空间域得到滤波后的图像。

二维线性变换的通用形式可表示为:
T ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) r ( x , y , u , v ) T(u, v) = \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x, y)r(x, y, u, v) T(u,v)=x=0M1y=0N1f(x,y)r(x,y,u,v)
其中, f ( x , y ) f(x, y) f(x,y)是输入图像, r ( x , y , u , v ) r(x,y,u,v) r(x,y,u,v)称为正变换核 T ( u , v ) T(u, v) T(u,v)称为 f ( x , y ) f(x, y) f(x,y)正变换

给定 T ( u , v ) T(u, v) T(u,v)后,可以用 T ( u , v ) T(u, v) T(u,v)的反变换还原 f ( x , y ) f(x, y) f(x,y):
f ( x , y ) = ∑ u = 0 M − 1 ∑ v = 0 N − 1 T ( u , v ) s ( x , y , u , v ) f(x, y) = \sum_{u=0}^{M-1}\sum_{v=0}^{N-1}T(u, v)s(x, y, u, v) f(x,y)=u=0M1v=0N1T(u,v)s(x,y,u,v)
s ( x , y , u , v ) s(x, y, u, v) s(x,y,u,v)称为反变换核。两个式子一起称为变换对

线性变换域中的一般操作方法
如果
r ( x , y , u , v ) = r 1 ( x , u ) r 2 ( y , v ) r(x, y, u, v) = r_1(x, u)r_2(y, v) r(x,y,u,v)=r1(x,u)r2(y,v)
那么正向变换核是可分的。如果 r 1 ( x , u ) r_1(x, u) r1(x,u)的作用等于 r 2 ( y , v ) r_2(y, v) r2(y,v),则称变换核是对称的。从而有
r ( x , y , u , v ) = r 1 ( x , u ) r 1 ( y , v ) r(x, y, u, v) = r_1(x, u)r_1(y, v) r(x,y,u,v)=r1(x,u)r1(y,v)
如果 s s s同样适用,则同样适用于反变换核。

傅里叶变换

傅里叶变换在图像处理中是一种很常用的变换方法,可以使图像从空间域转换到频率域从而进行一些图像处理操作。

二维离散傅里叶变换的变换核为
r ( x , y , u , v ) = e − j 2 π ( u x M + v y N ) r(x, y, u, v) = e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})} r(x,y,u,v)=ej2π(Mux+Nvy)
s ( x , y , u , v ) = 1 M N e j 2 π ( u x M + v y N ) s(x, y, u, v) = \frac{1}{MN}e^{j2\pi(\frac{ux}{M} + \frac{vy}{N})} s(x,y,u,v)=MN1ej2π(Mux+Nvy)

带入通用变换式中,可得离散傅里叶变换对
T ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x M + v y N ) T(u, v) = \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x, y) e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})} T(u,v)=x=0M1y=0N1f(x,y)ej2π(Mux+Nvy)
f ( x , y ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 T ( u , v ) e j 2 π ( u x M + v y N ) f(x, y) = \frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}T(u, v)e^{j2\pi(\frac{ux}{M} + \frac{vy}{N})} f(x,y)=MN1u=0M1v=0N1T(u,v)ej2π(Mux+Nvy)
傅里叶核是对称且可分的(证明见附),并且可分和对称的傅里叶核允许用一维傅里叶变换计算二维傅里叶变换(证明见附)。


证明:傅里叶核的对称性和可分性

根据同底幂的乘法运算 a m ∗ a n = a m + n a^m*a^n = a^{m+n} aman=am+n,可得
r ( x , y , u , v ) = e − j 2 π ( u x M + v y N ) = e − j 2 π u x M e − j 2 π v y N = r 1 ( x , u ) r 2 ( y , v ) r(x, y, u, v) = e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})} = e^{-j2\pi\frac{ux}{M}}e^{-j2\pi\frac{vy}{N}} = r_1(x, u)r_2(y, v) r(x,y,u,v)=ej2π(Mux+Nvy)=ej2πMuxej2πNvy=r1(x,u)r2(y,v)
可分性证毕
由上式可得
r 1 ( x , u ) r 2 ( y , v ) = e − j 2 π u x M e − j 2 π v y N = r 1 ( x , u ) r 1 ( y , v ) r_1(x, u)r_2(y, v) = e^{-j2\pi\frac{ux}{M}}e^{-j2\pi\frac{vy}{N}} = r_1(x, u)r_1(y, v) r1(x,u)r2(y,v)=ej2πMuxej2πNvy=r1(x,u)r1(y,v)
r 1 r_1 r1 r 2 r_2 r2是等价运算。对称性证毕

证明:可分和对称的傅里叶核允许用一维傅里叶变换计算二维傅里叶变换

T ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x M + v y N ) = ∑ x = 0 M − 1 e − j 2 π x u M ∑ y = 0 N − 1 f ( x , y ) e − j 2 π y v N = ∑ x = 0 M − 1 T ( x , v ) e − j 2 π x u M T ( x , v ) = ∑ y = 0 N − 1 f ( x , y ) e − j 2 π y v N \begin{align} T(u, v) & = \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x, y) e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})}\\ & = \sum_{x=0}^{M-1}e^{-j2{\pi}\frac{xu}{M}}\sum_{y=0}^{N-1}f(x, y)e^{-j2{\pi}\frac{yv}{N}}\\ & = \sum_{x=0}^{M-1}T(x, v)e^{-j2{\pi}\frac{xu}{M}}\\ T(x, v) & = \sum_{y=0}^{N-1}f(x, y)e^{-j2{\pi}\frac{yv}{N}} \end{align} T(u,v)T(x,v)=x=0M1y=0N1f(x,y)ej2π(Mux+Nvy)=x=0M1ej2πMxuy=0N1f(x,y)ej2πNyv=x=0M1T(x,v)ej2πMxu=y=0N1f(x,y)ej2πNyv


  • 一维连续傅里叶公式:
    F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt F(ω)=f(t)etdt
    根据欧拉公式
    e − j θ = c o s ( θ ) − j s i n ( θ ) e^{-j\theta} = cos(\theta) - jsin(\theta) ejθ=cos(θ)jsin(θ)
    一维傅里叶公式等价于
    F ( ω ) = ∫ − ∞ ∞ f ( t ) [ cos ⁡ ( ω t ) − j sin ⁡ ( ω t ) ] d t F(\omega) = \int_{-\infty}^{\infty} f(t)[\cos(\omega t) - j\sin(\omega t)]dt F(ω)=f(t)[cos(ωt)jsin(ωt)]dt
  • 一维离散傅里叶公式:
    F ( ω ) = ∑ n = 0 N − 1 f ( n ) e − j ω n N F(\omega) = \sum_{n=0}^{N-1}f(n)e^{-\frac{j\omega n}{N}} F(ω)=n=0N1f(n)eNjωn
  • 16
    点赞
  • 88
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值