keras学习笔记(1)-Keras的模块架构

这篇博客介绍了Keras作为基于Tensorflow等后端的高层神经网络API,强调其用于快速原型设计的优势。内容包括Keras的基本介绍、模块思维导图,并通过MNIST手写数字识别的实例进行快速上手演示。
摘要由CSDN通过智能技术生成

1.keras介绍

  keras是基于Tensorflow、Theano、CNTK后端的高层神经网络API,它简单快速的原型设计,让你可以快速的将idea转化为结果,并且可以在CPU和GPU之间无缝切换。

2. keras模块思维导图

这里写图片描述

3.快速上手-mnist手写字识别

#-*-coding:utf-8-*-
from keras.models import Sequential
from keras.datasets import mnist
from keras.optimizers import Adam
from keras.losses import categorical_crossentropy
from keras.layers import Dense,Reshape,Dropout,Flatten,Conv2D,MaxPool2D
from keras.utils import to_categorical

def loadData():
    (x_train,y_train),(x_test,y_test) = mnist.load_data()
    return x_train,y_train,x_test,y_test

def shuffle():
    pass

def createModel():
    model = Sequential()

    #reshape image to tensorf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值