验证集的loss问题

在机器学习中,出现验证集损失低于训练集损失的现象可能是因为过拟合或者学习率设置不当。过拟合时,模型过度学习训练数据,导致在未见过的数据(验证集)上表现更好。另外,如果学习率逐渐减小,模型可能会在训练集上损失继续降低,但在验证集上找到更好的局部最优解。文章讨论了这一现象,并引用了GitHub上的相关解答。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值