Qgis 使用QuickOSM插件导入开源地图

一、安装插件

如果没有安装插件的话,需要先安装插件。

安装步骤:

1、顶部菜单里找到Plugins->Manage and Install Plugins...

2、在搜索框中输入QuickOSM,在列表中选择QuickOSM,然后点击右下角的InstallPlugins。

QuickOSM

二、下载地图

1、打开https://www.openstreetmap.org

2、点击上方的导出

3、将右边的地图中心点拖到合适的地方。

4、点击左边蓝色背景的导出按钮,保存对话框中选择合适位置下载保存。

三、在Qgis中加入OpenStreetMap的地图数据

插件安装好,Vector的子菜单下就会多一个QuickOSM菜单,点击对话框。

OSM File选择刚才下载的地图文件,选择合适的图形,点击Open。

完成后,Qgis的图层窗口里就会多出刚刚添加的内容。此时图层数据是放在内存中的,需要点击右边的小图标保存为文件或存放到数据库中。

在弹出的对话框中选择合适的格式,选择要保存的文件名。

QuickOSM

至此OSM文件导入就完成了。

<think>嗯,用户问的是如何使用OpenStreetMap(OSM)计算天空视域因子(SVF)。首先,我需要理解SVF是什么。SVF是衡量从地面某点可见天空比例的一个指标,范围在0到1之间。这在城市气候学、建筑设计和环境研究中挺重要的,对吧? 那用户可能是个研究者或者城市规划的学生,想要评估城市形态对微气候的影响。他们可能已经知道OSM是一个开源的地理数据源,但不确定如何从中提取数据并计算SVF。可能需要详细的步骤,包括数据获取、处理、计算工具等。 首先,得考虑如何从OSM获取建筑物和地形数据。OSM的数据可以通过Overpass API或者导出工具如QGIS插件来下载。用户可能需要指导如何筛选建筑物数据,因为SVF计算主要依赖周围的障碍物,比如建筑物的高度和位置。 接下来是3D建模。OSM的数据通常包含建筑物的轮廓,但高度信息可能不全。这时候可能需要用默认高度或者补充其他数据源,比如LiDAR或本地数据集。这一步对准确性很关键,用户可能需要处理缺失数据的问题,或者寻找替代方案。 然后是选择合适的工具。例如,可以使用QGIS插件如UMEP,或者Python库如PySkyView。或者用Blender这样的3D软件进行视线分析。需要比较这些工具的优缺点,帮助用户选择最适合他们情况的方法。 计算SVF的具体方法,比如光线投射法或半球分析法,可能需要解释一下基本原理,让用户理解背后的逻辑。例如,光线投射是在多个方向发射光线,检测是否被遮挡,而半球分析则是在半球空间内积分可见天空的比例。 验证结果也很重要。用户可能需要知道如何通过实地测量或卫星图像来验证计算的准确性,确保他们的方法是可靠的。 最后,应用场景部分可以举例说明SVF如何用于热岛效应分析或城市规划,这样用户能更好地理解其实际用途。 可能用户会遇到的问题包括数据不全、工具使用复杂、计算量大等,需要提前考虑这些难点,并在步骤中给出解决建议,比如如何补全高度数据,或推荐高效的计算工具。 总之,回答需要结构清晰,逐步引导用户完成从数据获取到结果应用的整个过程,确保每个步骤都详细且可行。同时,注意使用正确的中文术语,避免技术术语过多导致理解困难,必要时提供工具链接或参考资料,帮助用户进一步探索。</think>以下为分步骤介绍如何使用OpenStreetMap计算天空视域因子(Sky View Factor, SVF): 1. **数据获取** - 从OpenStreetMap下载目标区域的矢量地图数据(建筑物轮廓、高程数据等) - 使用工具如QGISQuickOSM插件或Overpass API导出.osm文件 - 重点提取建筑物多边形和height标签(若存在) $$ \text{建筑高度} = \begin{cases} \text{OSM标签值} & \text{if exists} \\ \text{默认高度(如10m)} & \text{otherwise} \end{cases} $$ 2. **3D建模** - 将2D建筑物轮廓转换为3D模型 - 推荐工具:BlenderGIS插件(支持OSM数据直接导入) - 补充高程数据(可通过SRTM或AW3D30获取地形高度) 3. **SVF计算** - **光线投射法**:从计算点向半球空间发射光线,统计未被遮挡的比例 - **常用工具**: - GRASS GIS的`r.skyview`模块 - Python库`pySkyView`(基于raytracing算法) - 城市微气候模拟工具UMEP(集成在QGIS中) 4. **参数设置** - 方位角采样间隔:建议5°~10° - 天顶角分层:一般分4-6层 - 计算公式示例: $$ SVF = \frac{1}{2\pi} \sum_{i=1}^{n} \cos\theta_i \cdot \Delta\theta \cdot \Delta\phi $$ 5. **验证优化** - 通过街景照片验证(使用鱼眼镜头拍摄对比) - 调整建筑物高度估算参数(当OSM数据缺失时) - 考虑植被影响(需补充树木点云数据) **注意事项**: 1. OSM数据可能存在建筑高度缺失,建议结合当地GIS数据补充 2. 计算分辨率影响精度,城市区域推荐1-5米网格 3. 大规模计算需使用并行处理(如HPC集群或GPU加速) **应用场景**: - 城市热岛效应分析 - 建筑采光模拟 - 行人热舒适度评估 - 太阳能潜力计算 **推荐工具链**: ``` OSM数据 → QGIS预处理 → Blender建模 → UMEP计算 → ParaView可视化 ``` 建议从QGIS+UMEP组合开始尝试,该方案提供可视化界面且文档较为完善。如需更高精度,可转向Python自定义脚本结合LiDAR数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值