黎曼流形与黎曼几何初步-笔记

黎曼流形与黎曼几何初步-笔记

参考书籍:陈维桓《微分流形初步》,陈省身《微分几何》讲义

前置要求:代数结构,线性代数,张量代数,微分流形的初步了解

黎曼几何是现代几何学的重要概念,其理论已经深刻应用于广义相对论、机器学习。流形(manifold)是一种定义在集合论上的概念。流形上的几何,当然不能用欧式空间中的常识来看。事实上,介绍黎曼几何完全不需要依赖于欧式几何,而是依赖集合论的——甚至说如果要经常借用欧式几何中的概念来类比,反倒会代入一堆惯性思维,同时也会给严格的数学阐述造成麻烦。(例如,第一步我们就丢掉了欧式空间中向量的基的模糊定义,把切向量定义为一个映射,将切向量空间及其对偶空间间更好地统一起来(这个定义不在本文中介绍,为前置知识))。因此在学习黎曼几何时应该先摒弃欧式几何中的直观,才能有正确的认识,而在必要时,对二维流形的想像则会帮助一个形象的理解。

( M , g ) (M,g) (M,g)是一个 m m m维黎曼流形, g g g M M M上的基本度量张量,即一个正定的、非退化、二阶协变张量。设 v ∈ X ( M ) v\in \mathscr{X}(M) vX(M) X ( M ) \mathscr{X}(M) X(M)表示 M M M上的全体向量场集合。

内积与弧长

首先介绍黎曼流形上的内积与弧长的概念,因为它们比较简单,可以直接由度量 g g g得到。

黎曼流形上的两个切向量 X , Y ∈ T p M X,Y\in T_pM X,YTpM内积定义为 g ( X , Y ) = g i j X i Y i g(X,Y)=g_{ij}X^iY^i g(X,Y)=gijXiYi。那么对于切向量的模长和夹角也有了对应的定义 ∣ ∣ X ∣ ∣ = g ( X , X ) 1 2 , cos ⁡ ∠ ( X , Y ) = g ( X , Y ) ∣ ∣ X ∣ ∣ ⋅ ∣ ∣ Y ∣ ∣ ||X||=g(X,X)^{1\over2},\cos\angle (X,Y)={g(X,Y)\over||X||\cdot||Y||} X=g(X,X)21,cos(X,Y)=XYg(X,Y)

二次微分式
d s 2 = g i j d x i d x j \mathbb ds^2=g_{ij}\mathbb dx^i\mathbb dx^j ds2=gijdxidxj
它与局部坐标系的选取无关

一个参数曲线 ( γ ( t ) ) i = x i ( t ) (\gamma(t))^i=x^i(t) (γ(t))i=xi(t)的弧长
s = ∫ t 0 t 1 g i j ( d x i d t d x j d t ) d t s=\int_{t_0}^{t_1}\sqrt{g_{ij}\left({\mathbb dx^i\over \mathbb dt}{\mathbb dx^j\over \mathbb dt}\right)}dt s=t0t1gij(dtdxidtdxj) dt

切向量的变换关系

接下来我们首先探讨切向量、切向量的微分在坐标之间的变换关系,从而比较自然地说明协变微分算子、黎曼联络是如何被提出的。

⟨ U ; x i ⟩ \langle U;x^i\rangle U;xi是一个局部坐标系,切向量 v v v有局部坐标表达式
v ∣ U = v i ∂ ∂ x i v|_U=v^i {\partial\over \partial x^i} vU=vixi
其中 v i ∈ C ∞ ( U ) v^i\in C^\infty(U) viC(U),若有另一个局部坐标系 ⟨ V ; y i ⟩ \langle V;y^i \rangle V;yi v v v在其上局部坐标表达式
v ∣ V = v ~ i ∂ ∂ y i v|_V=\tilde v^i {\partial \over \partial y^i} vV=v~iyi
在这两个局部坐标系之间的变换关系为
v ~ i = v j ∂ y i ∂ x j \tilde v^i=v^j{\partial y^i\over \partial x^j} v~i=vjxjyi
类似的坐标变换称作遵循反变向量的变换规律.

上式微分得
d v ~ i = d v j ∂ y i ∂ x j + v j ∂ 2 y r ∂ x j ∂ x k d x k \mathbb{d}\tilde v^i=\mathbb{d}v^j{\partial y^i\over \partial x^j}+v^j{\partial^2 y^r\over \partial x^j\partial x^k}dx^k dv~i=dvjxjyi+vjxjxk2yrdxk
这说明在一般的微分算子 d \mathbb{d} d下, d v i \mathbb{d}v^i dvi并不符合反变向量的变换规律。这也是要引入协变微分算子的初衷之一。我们设法用黎曼张量的分量来表达 ∂ 2 y r ∂ x j ∂ y k \partial^2 y^r\over \partial x^j \partial y^k xjyk2yr。求度量张量 g g g在两个坐标下的变换关系,并代换为克氏记号 Γ \Gamma Γ,(略去证明过程直接给出)引理
∂ 2 y r ∂ x j ∂ x j = Γ i j k ∂ y r ∂ x k − Γ ~ p q r ∂ y p ∂ x i ∂ y q ∂ x j {\partial^2 y^r\over \partial x^j \partial x^j}=\Gamma_{ij}^k{\partial y^r \over \partial x^k}-\tilde \Gamma^r_{pq} {\partial y^p \over \partial x^i}{\partial y^q \over \partial x^j} xjxj2yr=ΓijkxkyrΓ~pqrxiypxjyq
由此,命
D v i = d v i + Γ j k i v j d x k Dv^i=\mathbb{d}v^i+\Gamma_{jk}^iv^j \mathbb{d}x^k Dvi=dvi+Γjkivjdxk
D v i Dv^i Dvi遵循反变向量的变换规律,即 D v ~ i = D v j ∂ y i ∂ x j D\tilde v^i=Dv^j{\partial y^i\over \partial x^j} Dv~i=Dvjxjyi.

协变微分与协变导数

对切向量的一个分量的微分定义如上,定义:协变微分 D v Dv Dv,在局部坐标系 U U U
D v ∣ U = D v i ⊗ ∂ ∂ x i = ( ∂ v i ∂ x k + v i Γ j k i ) d x k ⊗ ∂ ∂ x i Dv|_U=Dv^i\otimes{\partial\over \partial x^i}=({\partial v^i\over \partial x^k}+v^i\Gamma_{jk}^i)\mathbb{d}x^k\otimes {\partial\over\partial x^i} DvU=Dvixi=(xkvi+viΓjki)dxkxi
D v Dv Dv M M M上的 ( 1 , 1 ) (1,1) (1,1)型光滑张量场(在每一点处,坐标有 m 2 m^2 m2个),可以看做以1次微分式为分量的切向量场。,对于 X ∈ X ( M ) X\in\mathscr X(M) XX(M)
D X v = X k ( ∂ v i ∂ x k + v j Γ j k i ) ∂ ∂ x i D_Xv=X^k\left({\partial v^i\over\partial x^k}+v^j\Gamma^i_{jk}\right){\partial \over \partial x^i} DXv=Xk(xkvi+vjΓjki)xi
这就定义了一个光滑切向量场 D X v D_Xv DXv ( D X v ) ( p ) (D_Xv)(p) (DXv)(p)就表示在 p p p点处切向量场 v v v关于方向 X ( p ) X(p) X(p)的导数。其中形式 ∂ v i ∂ x k + v j Γ j k i {\partial v^i\over\partial x^k}+v^j\Gamma^i_{jk} xkvi+vjΓjki非常常见,所以我们为了简便,记作
v , k i = ∂ v i ∂ x k + v j Γ j k i v^i_{,k}={\partial v^i\over\partial x^k}+v^j\Gamma^i_{jk} v,ki=xkvi+vjΓjki
简记后,就有
D X v = X k v , k i ∂ ∂ x i D_Xv=X^kv^i_{,k}{\partial\over \partial x^i} DXv=

  • 5
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值