1.趋势
zookeeper和eureka,consul用的没那么多,nacos现在用的越来越多,以后也会是一个大的趋势,但是现在可能还没那么的普及
2.CAP理论
CAP原则又称CAP定理,指的是在一个分布式系统中,[一致性]、[可用性]、分区容错性(Partition tolerance)。CAP 原则指的是,这三个要素最多只能同时实现两点,不可能三者兼顾。
分区容错性:指的分布式系统中的某个节点或者网络分区出现了故障的时候,整个系统仍然能对外提供满足一致性和可用性的服务。也就是说部分故障不影响整体使用。
可用性: 一直可以正常的做读写操作。简单而言就是客户端一直可以正常访问并得到系统的正常响应。用户角度来看就是不会出现系统操作失败或者访问超时等问题。
一致性:在分布式系统完成某写操作后任何读操作,都应该获取到该写操作写入的那个最新的值。相当于要求分布式系统中的各节点时时刻刻保持数据的一致性。
3.zookeeper原理
zookeeper的原理,leader+follower,leader写,同步到follower,follower可以读,保证顺序一致性,就是基本尽量保证到数据一致的,主动推送,典型的CP,leader崩溃的时候,为了保证数据一致性,尽量不要读到不一致的数据,此时要重新选举leader以及做数据同步,此时集群会短暂的不可用,CP
4.服务注册中心选型
- 服务注册中心选型对比的时候,其他的分布式系统选型的时候,一般要满足cp或者ap
- P简单来说就是任何分布式系统一般都会满足,他就是分区容错性;CP,C,一致性,尽可能的去保证你读取到的数据是一致的,牺牲掉一个A,可用性,一旦leader崩溃,zk可能会有一个短时间内,几十s有可能,集群不可用,此时需要重新选举一个leader,然后再做数据同步,保证数据一致性之后再开放让你来读取
5.eureka的原理
eureka的原理,peer-to-peer,大家都能写也都能读,每个节点都要同步给其他节点,但是是异步复制的,所以随时读任何一个节点,可能读到的数据都不一样,任何一个节点宕机,其他节点正常工作,可用性超高,但是数据一致性不行,AP
5.Nacos和Consul
Consul也是基于raft算法的CP模型
Nacos也是基于raft算法的CP模型,同时也支持配置成类似eureka的AP
总结
其实CP或者AP也都行,CP就是偶尔可能短时间不可用,AP就是可能数据不一致,两个都有问题,但是在生产环境下,无论CP还是AP其实都用的很多
但是未来还是建议大家用nacos,因为nacos的功能最为完善,包括了雪崩保护、自动注销实例、监听支持、多数据中心、跨注册中心同步、spring cloud集成、dubbo集成、k8s集成,这些都支持,其他的几个技术基本都支持部分罢了