论文题目:Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting

时空多图卷积网络:网约车需求预测中的非欧几里得关联建模
论文介绍了在网约车需求预测中,ST-MGCN如何捕捉区域间非欧几里得相关性,通过多图编码和卷积处理,同时结合上下文门控递归网络处理时间依赖性。实验结果显示,模型相较于先进方法有10%的相对误差降低。研究关注城市计算中的动态感知、大规模异构数据挖掘及知识表达问题。
论文题目 4:Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting(用于网约车需求预测的时空多图卷积网络)
期刊及发表年 The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19);2019年
全部作者 Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, Yan Liu
论文贡献 (1) 在网约车需求预测中识别出区域间的非欧氏相关性,并提出使用多个图对其进行编码。然后进一步利用提出的多图卷积来显式建模这些相关性。(2) 提出了上下文门递归神经网络(CGRNN),用来在建模时间依赖性时合并全局上下文信息(3) 使用两个大型数据集进行验证,与最先进的网约车需求预测方法比,相对误差降低了10%
研究方法 形式化了时空打车需求预测的学习问题,并描述了如何使用提出的时空多图卷积网络(ST-MGCN)建模时空依赖性
所用数据 北京和上海2017年5月1日-12月31日网约车订单数据
其他 下一步工作:(1)使用其他时空预测任务评估模型;(2)将该方法扩展到多步序列预测上。

说明:论文中名词的解释都来源于网络。

论文需求:

  • 首先,将区域间的非欧式成对相关编码到多图中,然后使用多图卷积对这些相关进行显示建模。
  • 为了在建模时间相关性时利用全局上下文信息,进一步提出了上下文门控递归神经网络(contextual gated recurrent neural network)

论文中涉及到的部分内容:

  1. 网约车需求预测:地区间的复杂时空依赖问题

  2. Euclidean correlations:欧式相关性
    non-Euclidean pair-wise correlations:非欧几里得成对关联

  3. 论文提出了用于网约车需求预测的:时空多图卷积网络(ST-MGCN)

  4. 城市计算:一个城市的人口生态以及生活计算。
    挑战1:如何更加合理有效的感知城市动态,包括人在城市里的移动性、车流、环境和能耗等。这个感知过程既要不影响到人们的正常生活,并考虑到能耗和环保,同时也要有足够大的覆盖范围、实时性和准确性;
    挑战2:如何管理和挖掘大规模的异构数据,如道路和地理数据、视频和图像数据、轨迹数据和文本数据、以及社交网络结构数据等。首先,由于城市计算所涉及的很多应用均有很高的实时性要求(如异常事件预警和交通流量感知等)。虽然数据规模巨大,但这个挖掘过程必须快速高效。再者,一方面的数据往往只能告知我们局部的信息量,融合来自不同数据源的信息才能更深层次地了解事件的根源。例如,通过路面上的传感器我们可以知道某条道路发生了拥堵。通过摄像头获取的视频数据,我们进一步发现这条道路上发生了车祸。再进一步,通过用户发表在微搏上的数据,我们就可能知道车祸的原因、具体责任人和一些更详实的信息。但这些数据具有完全不同的结构和特性,也分别适用于不同的挖掘算法。因此,数据的庞大规模和异构属性将为快速的协同挖掘和深度理解带来很大的挑战性。
    挑战3:如何将获取的知识有效的表达出来,并从中提取能用来做决策的智能。比如城市中人们在不同时间段中的移动规律如何展现,以及如何利用已获悉的交通流量来指导人们的出行;或者,如何从车流和人流中发现城市规划中存在的问题,并如何改进。从知识到智能(尤其是可以帮助我们作决策的智能)的飞跃仍需要相当大的努力。

  5. 智能运输系统(Intelligent Transportation System,ITS)
    智能运输系统的服务领域为:先进的交通管理系统、出行信息服务系统、商用车辆运营系统、电子收费系统、公共交通运营系统、应急管理系统、先进的车辆控制系统。“智能运输系统”实质上就是将先进的信息技术、计算机技术、数据通信技术、传感器技术、电子控制技术、自动控制技术、运筹学、人工智能等学科成果综合运用于交通运输、服务控制和车辆制造,加强了车辆、道路和使用者之间的联系,从而形成一种定时、准确、高效的新型综合运输系统

  6. 图嵌入参考链接:https://www.zhuanzhi.ai/document/7913eba0f04d30040b6

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值