Kolmogorov复杂性 简介

Kolmogorov复杂性提供了一种衡量事物本质联系的通用度量,用于区分随机和有序事件。通过定义一个数值序列的复杂性为其最短的打印程序长度,科学家试图在随机事件的海洋中找到有序的边界。尽管计算复杂性非常困难,但数学家已经取得进展,例如在解决Heilbronn问题上,将随机事件的概念应用于计算机科学和金融市场,如优化计算机程序的平均运行时间和评估衍生金融工具的公平市价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各种信息对象,例如图像之间的相似度、文档之间的相似度、跨媒体信息对象的相似度以及相应产生的排序问题

从本质上都可以归结到信息度量上。信息距离是基于Kolmogorov复杂性定义的,是衡量事物本质联系的一种通用性度量。与其它度量方法相比,信息距离具有普适性、领域无关性和参数无关性等性质,因此它可以用来处理结构化、非结构化、甚至难以理解的对象和数据,并由此成为信息科学的一种实用工具。


下面介绍Kolmogorov复杂性(转)


旋转的骰子

谁掌握了随机概率,谁就会赢得诺贝尔奖,或者可以在赌场中消磨时间。对于正在解决随机概率问题的数学家而言,赌博的回报非常高。

如果有一天你在赌场消磨时光,你会注意到一种很奇怪的现象,如果连续掷一百次骰子,赌博机更多地给出奇数。于是你的脑海里会闪现出获取巨额回报的念头:是否应该赌奇数呢,或许这只是迷信在作怪?

你的困惑是一直困扰着赌徒和数学家的难题:如何分辨一个独立的事件是随机的还是有规律可言的。我们身边充满了随机事件,从股票的价格到原子的运动,然而它们无从捉摸,如果能搞明白的话,我们也就不称其为随机事件了。

形象地说,科学家永远生活在随机事件的汪洋大海中少数几个有序事件的海岛上,这是因为他们只能够研究可以描述的事物。一个真正的随机事件本身无规律可言,因此是不可描述的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值