Process Mining

荷兰埃因霍温科技大学流程挖掘 (Process Mining)公开课随笔。

课程背景

流程挖掘相较于其他 BI (Business Intelligence) 方法而言,是一种更为轻量级 (Lightweight) 的方法。本课程中所使用的主要有两种工具:ProM以及Disco

第一讲

在第一讲中,将着重介绍数据挖掘的相关概念以及为何传统的数据挖掘方法不适用于流程挖掘。

第一节

粗略介绍数据科学以及大数据。

第二节

第三节

第四节

本节主要介绍决策树 (Decision Tree) 的相关知识。

第五节

本节主要论述决策树的应用。

第六节

本节主要讲述关联式规则学习 (Association Rule Learning)。

第二讲

在第二讲中,将着重于流程模型 (Process Model) 以及流程探索 (Process Discovery) 问题。

第一节

本节主要侧重于事件日志 (Event Log) 的介绍以及借用流程模型进行流程探索。

流程挖掘的主要任务

第二节

本节与下一节将介绍流程挖掘中非常重要的一个概念:Petri网 (Petri Net)。

Process mining是一种通过分析和挖掘系统中的实际操作数据来揭示和改进业务流程的方法。CSDN是一个技术博客和资源分享平台,下面将介绍使用CSDN平台上的Process mining工具包的使用。 首先,在CSDN平台上可以找到一些流行的Process mining工具包,如ProM、Disco和RapidMiner等。在使用这些工具包之前,我们需要确保正确安装它们,并根据需要进行配置。 其次,通常需要准备用于分析的操作日志数据。这些数据可以是来自各种系统的日志文件,也可以是数据库中的数据。将操作日志数据导入到Process mining工具包中是非常重要的一步。 接下来,使用Process mining工具包进行数据预处理。这包括数据清洗、过滤和转换等步骤,以确保数据的可靠性和一致性。此外,还可以对数据进行分段,以便更精确地分析特定的业务流程。 然后,通过选择适当的分析算法,可以使用Process mining工具包对数据进行探索和分析。这些算法可以帮助我们发现潜在的问题、瓶颈或无效的操作,从而改进业务流程。 最后,使用Process mining工具包生成可视化和报告。这些可视化和报告可以帮助我们更好地理解和解释分析结果,并与他人共享我们的发现。通过可视化,我们可以更直观地展示业务流程中的一些关键指标和路径,以及改进的建议。 总而言之,Process mining工具包是帮助我们进行业务流程分析和改进的重要工具。在这些工具包中,我们可以找到各种功能强大的算法和工具,以帮助我们挖掘实际操作数据中隐藏的有价值信息,并提供有关如何改进业务流程的建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值