梯度提升树算法详解

1. GBDT 概述

GBDT(梯度提升树)也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。

GBDT的迭代是针对当前模型的负梯度来进行拟合,比如当前模型与真实值差为5,下一个弱学习器用4去拟合差值5,还剩下1,下下个弱学习器又用0.5去拟合差值1,还剩0.5,使值误差越来越小。

2. GBDT 负梯度拟合

设学习器为 F F F,损失函数为 L ( y , F ) L(y,F) L(y,F),则根据梯度下降有:
F i = F i − 1 − d L ( y , F ) d F F_i = F_{i-1}- \frac{dL(y,F)}{dF} Fi=Fi1dFdL(y,F)GBDT采用的是加法模型,即
F i = F i − 1 + T F_i = F_{i-1} + T Fi=Fi1+T所以得到拟合的目标即是负梯度
T = − d L ( y , F ) d F T=-\frac{dL(y,F)}{dF} T=dFdL(y,F)

3. GBDT 损失函数

3.1 分类算法

  • 指数损失函数
    L ( y , f ( x ) ) = e x p ( − y f ( x ) ) L(y, f(x)) = exp(-yf(x)) L(y,f(x))=exp(yf(x))
  • 二分类对数损失
    L ( y , f ( x ) ) = l o g ( 1 + e x p ( − y f ( x ) ) ) L(y, f(x)) = log(1+ exp(-yf(x))) L(y,f(x))=log(1+exp(yf(x)))
  • 多分类对数损失,设类别数为 K K K
    L ( y , f ( x ) ) = − ∑ k = 1 K y k l o g    p k ( x ) L(y, f(x)) = - \sum\limits_{k=1}^{K}y_klog\;p_k(x) L(y,f(x))=k=1Kyklogpk(x)

3.2 回归算法

  1. 均方差
    L ( y , f ( x ) ) = ( y − f ( x ) ) 2 L(y, f(x)) =(y-f(x))^2 L(y,f(x))=(yf(x))2
  2. 绝对损失
    L ( y , f ( x ) ) = ∣ y − f ( x ) ∣ L(y, f(x)) =|y-f(x)| L(y,f(x))=yf(x)负梯度为
    s i g n ( y i − f ( x i ) ) sign(y_i-f(x_i)) sign(yif(xi))
  3. Huber损失,它是均方差和绝对损失的折中产物,对于远离中心的异常点,采用绝对损失,而中心附近的点采用均方差。这个界限一般用分位数点度量。损失函数如下:
    L ( y , f ( x ) ) = { 1 2 ( y − f ( x ) ) 2 ∣ y − f ( x ) ∣ ≤ δ δ ( ∣ y − f ( x ) ∣ − δ 2 ) ∣ y − f ( x ) ∣ > δ L(y, f(x))= \begin{cases} \frac{1}{2}(y-f(x))^2& {|y-f(x)| \leq \delta}\\ \delta(|y-f(x)| - \frac{\delta}{2})& {|y-f(x)| > \delta} \end{cases} L(y,f(x))={21(yf(x))2δ(yf(x)2δ)yf(x)δyf(x)>δ
    负梯度为:
    r ( y i , f ( x i ) ) = { y i − f ( x i ) ∣ y i − f ( x i ) ∣ ≤ δ δ s i g n ( y i − f ( x i ) ) ∣ y i − f ( x i ) ∣ > δ r(y_i, f(x_i))= \begin{cases} y_i-f(x_i)& {|y_i-f(x_i)| \leq \delta}\\ \delta sign(y_i-f(x_i))& {|y_i-f(x_i)| > \delta} \end{cases} r(yi,f(xi))={yif(xi)δsign(yif(xi))yif(xi)δyif(xi)>δ
  4. 分位数损失。它对应的是分位数回归的损失函数,表达式为
    L ( y , f ( x ) ) = ∑ y ≥ f ( x ) θ ∣ y − f ( x ) ∣ + ∑ y < f ( x ) ( 1 − θ ) ∣ y − f ( x ) ∣ L(y, f(x)) =\sum\limits_{y \geq f(x)}\theta|y - f(x)| + \sum\limits_{y < f(x)}(1-\theta)|y - f(x)| L(y,f(x))=yf(x)θyf(x)+y<f(x)(1θ)yf(x)
    负梯度为
    r ( y i , f ( x i ) ) = { θ y i ≥ f ( x i ) θ − 1 y i < f ( x i ) r(y_i, f(x_i))= \begin{cases} \theta& { y_i \geq f(x_i)}\\ \theta - 1 & {y_i < f(x_i) } \end{cases} r(yi,f(xi))={θθ1yif(xi)yi<f(xi)
    对于Huber损失和分位数损失,主要用于减少异常点对损失函数的影响。

4. GBDT 回归算法

输入是训练集样本 T = { ( x , y 1 ) , ( x 2 , y 2 ) , . . . ( x m , y m ) } T=\{(x_,y_1),(x_2,y_2), ...(x_m,y_m)\} T={(x,y1),(x2,y2),...(xm,ym)},最大迭代次数 T T T, 损失函数 L L L
输出是强学习器 f ( x ) f(x) f(x)

(1) 初始化弱学习器
f 0 ( x ) = a r g    m i n ⏟ c ∑ i = 1 m L ( y i , c ) f_0(x) = \underbrace{arg\; min}_{c}\sum\limits_{i=1}^{m}L(y_i, c) f0(x)=c argmini=1mL(yi,c)(2) 对迭代轮数 t = 1 , 2 , ⋯   , T t=1,2,\cdots,T t=1,2,,T 有:
(a) 对样本 i = 1 , 2 , ⋯   , m i=1,2,\cdots,m i=1,2,,m,计算负梯度
r t i = − [ ∂ L ( y i , f ( x i ) ) ) ∂ f ( x i ) ] f ( x ) = f t − 1      ( x ) r_{ti} = -\bigg[\frac{\partial L(y_i, f(x_i)))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;\; (x)} rti=[f(xi)L(yi,f(xi)))]f(x)=ft1(x)
(b) 利用 ( x i , r t i )      ( i = 1 , 2 , ⋯   , m ) (x_i,r_{ti})\;\; (i=1,2,\cdots,m) (xi,rti)(i=1,2,,m), 拟合一棵CART回归树,得到第 t t t 棵回归树,其对应的叶子节点区域为 R t j , j = 1 , 2 , . . . , J R_{tj}, j =1,2,..., J Rtj,j=1,2,...,J,其中 J J J 为回归树 t t t 的叶子节点的个数。
(c) 对叶子区域 j = 1 , 2 , ⋯   , J j =1,2,\cdots,J j=1,2,,J ,计算最佳拟合值
c t j = a r g    m i n ⏟ c ∑ x i ∈ R t j L ( y i , f t − 1 ( x i ) + c ) c_{tj} = \underbrace{arg\; min}_{c}\sum\limits_{x_i \in R_{tj}} L(y_i,f_{t-1}(x_i) +c) ctj=c argminxiRtjL(yi,ft1(xi)+c)(d) 更新强学习器
f t ( x ) = f t − 1 ( x ) + ∑ j = 1 J c t j I ( x ∈ R t j ) f_{t}(x) = f_{t-1}(x) + \sum\limits_{j=1}^{J}c_{tj}I(x \in R_{tj}) ft(x)=ft1(x)+j=1JctjI(xRtj)(3) 构建最终学习器为:
f ( x ) = f T ( x ) = f 0 ( x ) + ∑ t = 1 T ∑ j = 1 J c t j I ( x ∈ R t j ) f(x) = f_T(x) =f_0(x) + \sum\limits_{t=1}^{T}\sum\limits_{j=1}^{J}c_{tj}I(x \in R_{tj}) f(x)=fT(x)=f0(x)+t=1Tj=1JctjI(xRtj)

5. GBDT 二分类算法

对于二元GBDT,如果用类似于逻辑回归的对数似然损失函数,则损失函数为:
L ( y , f ( x ) ) = l o g ( 1 + e x p ( − y f ( x ) ) ) L(y, f(x)) = log(1+ exp(-yf(x))) L(y,f(x))=log(1+exp(yf(x)))其中 y ∈ { − 1 , + 1 } y \in\{-1, +1\} y{1,+1},则此时的负梯度误差为
r t i = − [ ∂ L ( y , f ( x i ) ) ) ∂ f ( x i ) ] f ( x ) = f t − 1      ( x ) = y i ( 1 + e x p ( y i f ( x i ) ) ) r_{ti} = -\bigg[\frac{\partial L(y, f(x_i)))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;\; (x)} = \frac{y_i}{(1+exp(y_if(x_i)))} rti=[f(xi)L(y,f(xi)))]f(x)=ft1(x)=(1+exp(yif(xi)))yi对于生成的决策树,我们各个叶子节点的最佳负梯度拟合值为
c t j = a r g    m i n ⏟ c ∑ x i ∈ R t j l o g ( 1 + e x p ( − y i ( f t − 1 ( x i ) + c ) ) ) c_{tj} = \underbrace{arg\; min}_{c}\sum\limits_{x_i \in R_{tj}} log(1+exp(-y_i(f_{t-1}(x_i) +c))) ctj=c argminxiRtjlog(1+exp(yi(ft1(xi)+c)))由于上式比较难优化,我们一般使用近似值代替
c t j = ∑ x i ∈ R t j r t i ∑ x i ∈ R t j ∣ r t i ∣ ( 1 − ∣ r t i ∣ ) c_{tj} =\frac{ \sum\limits_{x_i \in R_{tj}}r_{ti}}{ \sum\limits_{x_i \in R_{tj}}|r_{ti}|(1-|r_{ti}|)} ctj=xiRtjrti(1rti)xiRtjrti除了负梯度计算和叶子节点的最佳负梯度拟合的线性搜索,二元GBDT分类和GBDT回归算法过程相同。

6. GBDT 多分类算法

假设类别数为K,则此时我们的对数似然损失函数为:
L ( y , f ( x ) ) = − ∑ k = 1 K y k l o g    p k ( x ) L(y, f(x)) = - \sum\limits_{k=1}^{K}y_klog\;p_k(x) L(y,f(x))=k=1Kyklogpk(x)其中如果样本输出类别为 k k k,则 y k = 1 y_k=1 yk=1。第 k k k 类的概率 p k ( x ) p_k(x) pk(x) 的表达式为:
p k ( x ) = e x p ( f k ( x ) ) ∑ l = 1 K e x p ( f l ( x ) ) p_k(x) = \frac{exp(f_k(x)) }{\sum\limits_{l=1}^{K} exp(f_l(x))} pk(x)=l=1Kexp(fl(x))exp(fk(x))集合上两式,我们可以计算出第 t t t 轮的第 $ i$ 个样本对应类别 l l l 的负梯度误差为
r t i l = − [ ∂ L ( y i , f ( x i ) ) ) ∂ f ( x i ) ] f k ( x ) = f l , t − 1      ( x ) = y i l − p l , t − 1 ( x i ) r_{til} = -\bigg[\frac{\partial L(y_i, f(x_i)))}{\partial f(x_i)}\bigg]_{f_k(x) = f_{l, t-1}\;\; (x)} = y_{il} - p_{l, t-1}(x_i) rtil=[f(xi)L(yi,f(xi)))]fk(x)=fl,t1(x)=yilpl,t1(xi)对于生成的决策树,我们各个叶子节点的最佳负梯度拟合值为
c t j l = a r g    m i n ⏟ c j l ∑ i = 0 m ∑ k = 1 K L ( y k , f t − 1 , l ( x ) + ∑ j = 0 J c j l I ( x i ∈ R t j l ) ) c_{tjl} = \underbrace{arg\; min}_{c_{jl}}\sum\limits_{i=0}^{m}\sum\limits_{k=1}^{K} L(y_k, f_{t-1, l}(x) + \sum\limits_{j=0}^{J}c_{jl} I(x_i \in R_{tjl})) ctjl=cjl argmini=0mk=1KL(yk,ft1,l(x)+j=0JcjlI(xiRtjl))由于上式比较难优化,我们一般使用近似值代替
c t j l = K − 1 K    ∑ x i ∈ R t j l r t i l ∑ x i ∈ R t i l ∣ r t i l ∣ ( 1 − ∣ r t i l ∣ ) c_{tjl} = \frac{K-1}{K} \; \frac{\sum\limits_{x_i \in R_{tjl}}r_{til}}{\sum\limits_{x_i \in R_{til}}|r_{til}|(1-|r_{til}|)} ctjl=KK1xiRtilrtil(1rtil)xiRtjlrtil除了负梯度计算和叶子节点的最佳负梯度拟合的线性搜索,多元GBDT分类和二元GBDT分类以及GBDT回归算法过程相同。

7. 提升树示例

这里放一个提升树的回归示例,梯度提升树与其相似,只不过需要计算负梯度。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考文章
[1] https://www.cnblogs.com/pinard/p/6140514.html

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值