C++进阶—AVL树(2)

文章详细介绍了AVL树的概念,强调了其平衡性质,以及在插入新节点后如何通过旋转操作保持平衡。插入分为二叉搜索树插入和平衡因子调整两步,旋转包括右右、左左、左右、右左四种情况。AVL树在查询上高效,但在插入和删除时需要复杂的结构调整。
摘要由CSDN通过智能技术生成

 

目录

0. 前言

1. AVL树的概念

2. AVL树节点的定义

3. AVL树的插入

4. AVL树的旋转

4.1 新节点插入较高右子树的右侧---右右:左单旋

4.2 新节点插入较高左子树的左侧---左左:右单旋

4.3 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

4.4 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

4.5 AVL旋转总结

5. AVL树的验证

6. AVL树的删除

7. AVL树的性能


0. 前言

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个 共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此 map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

本篇文章主要分析AVL树插入的实现、及算法思想,分别针对各种情况采取的平衡调节分析,对于AVL树的删除操作,由于其复杂度和使用场景,不涉及分析,重点在后续的红黑树!

1. AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。

        因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整)。

        即可降低树的高度,从而减少平均搜索长度。 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  •         它的左右子树都是AVL树
  •         左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

         如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 $O(log_2 n)$,搜索时间复杂度O($log_2 n$)。

2. AVL树节点的定义

AVL树因为其需要为后续旋转调整平衡操作的便捷,采用三叉链实现,通过父节点指针,便可实现向上遍历,同时使用balance factor记录每个节点的平衡因子,数据存储采取STL提供的pair类实现的Key-Value模型!

template<class K,class V>
struct AVLTreeNode {
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	std::pair<K, V> _kv;
	int _bf; //balance factor 平衡因子

	AVLTreeNode(const std::pair<K,V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_bf(0)
	{}
};

3. AVL树的插入

 

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:

  1.         按照二叉搜索树的方式插入新节点
  2.         调整节点的平衡因子
template<class K, class V>
class AVLTree {
	typedef AVLTreeNode<K, V> Node;
public:
	bool Insert(const std::pair<K, V>& kv) {
		// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
		if (_root == nullptr) {
			_root = new Node(kv);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur != nullptr) {
			if (cur->_kv.first < kv.first) {
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first) {
				parent = cur;
				cur = cur->_left;
			}
			else {
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first < kv.first) {
			parent->_right = cur;
		}
		else {
			parent->_left = cur;
		}
		cur->_parent = parent;

		// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
		//控制平衡_判断是否平衡_更新平衡因子
		/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
		的平衡因子分为三种情况: - 1,0, 1, 分以下两种情况:
		1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子 - 1即可
		2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子 + 1即可

		此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
		1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
		成0,此时满足AVL树的性质,插入成功
		2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
		新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
		3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
		行旋转处理*/
		while (parent) {
			if (cur == parent->_right) {
				parent->_bf++;
			}
			else {
				parent->_bf--;
			}

			// 更新后检测双亲的平衡因子
			if (parent->_bf == 0) {
				//平衡状态
				return true;
			}
			else if (abs(parent->_bf) == 1) {
				//parent高度变高,继续向上更新高度
				cur = parent;
				parent = parent->_parent;
			}
			else if (abs(parent->_bf) == 2) {
				//说明parent所在子树,不平衡,需要旋转
				//情况1:右右 —— 左旋转 
				if (parent->_bf == 2 && cur->_bf == 1) {
					RotateL(parent);
				}
				//情况2:左左 —— 右旋转
				else if (parent->_bf == -2 && cur->_bf == -1) {
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1) {
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1) {
					RotateRL(parent);
				}
				else {
					assert(false);
				}
				break;
			}
			else {
				//插入前就不是AVL树
				assert(false);
			}
		}
		return true;
	}
private:
	Node* _root = nullptr;
};

4. AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

4.1 新节点插入较高右子树的右侧---右右:左单旋

当新增节点导致平衡因子向上调整时,如果cur ->_bf == 1 && parent->_bf == 2,此时parent->_bf == 2说明右子树为最高子树,cur ->_bf == 1说明右子树的右树为插入位置,需要进行左单旋,绘图分析情况:

first:

 second:
 

 third:

 代码实现:

	//时间复杂度O(1),且更新因子最多走高度次
	void RotateL(Node* parent) {
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		subR->_left = parent;
		//parent是整棵树的根
		//parent是子树的根,需要更改根的父亲的左或右节点
		Node* pParent = parent->_parent;
		if (parent == _root) {
			_root = subR;
		}
		else {
			if (parent == pParent->_left) {
				pParent->_left = subR:
			}
			else {
				pParent->_right = subR;
			}
		}
		subR->_parent = pParent;

		parent->_parent = subR;
		parent->_right = subRL;
		if (subRL) {
			subRL->_parent = parent;
		}

		subR->_bf = parent->_bf = 0;
	}

4.2 新节点插入较高左子树的左侧---左左:右单旋

当新增节点导致平衡因子向上调整时,如果cur ->_bf == -1 && parent->_bf == -2,此时parent->_bf == -2说明左树为最高子树,cur ->_bf == -1说明左子树的左树为其插入位置,需要进行右单旋,绘图分析情况:

 上述后情况和左单旋后续分析近似

代码实现:

	void RotateR(Node* parent) {
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* pParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root) {
			_root = subL;
		}
		else {
			if (pParent->_left == parent) {
				pParent->_left = subL;
			}
			else {
				pParent->_right = subL;
			}
		}
		subL->_parent = pParent;
		parent->_left = subLR;
		if (subLR) {
			subLR->_parent = parent;
		}

		subL->_bf = parent->_bf = 0;
	}

4.3 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

当新增节点导致平衡因子向上调整时,如果cur ->_bf == 1 && parent->_bf == -2,此时说明左树为最高子树,且插入在左子树的右树,为其插入位置,绘图分析情况:

 代码实现:

	void RotateLR(Node* parent) {
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;
		RotateL(parent->_left);
		RotateR(parent);

		subLR->_bf = 0;
		if (bf == 1) {
			parent->_bf = 0;
			subL->_bf = -1;
		}
		else if (bf == -1) {
			parent->_bf = 1;
			subL->_bf = 0;
		}else if(bf == 0){
			parent->_bf = 0;
			subL->_bf = 0;
		}
		else {
			assert(false);
		}
	}

4.4 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

当新增节点导致平衡因子向上调整时,如果cur ->_bf == -1 && parent->_bf == 2,此时说明右子树为最高子树,且插入在右子树的左树,为其插入位置,绘图分析情况:

 

 代码实现:

	void RotateRL(Node* parent) {
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;
		RotateR(parent->_right);
		RotateL(parent);

		subRL->_bf = 0;
		if (bf == 1) {
			parent->_bf = -1;
			subR->_bf = 0;
		}
		else if (bf == -1) {
			parent->_bf = 0;
			subR->_bf = 1;
		}
		else if (bf == 0) {
			parent->_bf = 0;
			subR->_bf = 0;
		}
		else {
			assert(false);
		}
	}

4.5 AVL旋转总结

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑:

1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR

  •         当pSubR的平衡因子为1时,执行左单旋
  •         当pSubR的平衡因子为-1时,执行右左双旋

2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL

  •         当pSubL的平衡因子为-1是,执行右单旋
  •         当pSubL的平衡因子为1时,执行左右双旋 旋转完成后,

原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

5. AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

1. 验证其为二叉搜索树

  •         如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

2. 验证其为平衡树

  •         每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  •         节点的平衡因子是否计算正确

代码实现:

public:
	void Inorder() {
		_Inorder(_root);
	}
	bool IsBalance() {
		return _IsBalance(_root);
	}
private:
	bool _IsBalance(Node* cur) {
		if (cur == nullptr) {
			return true;
		}
		int diff = _Height(cur->_right) - _Height(cur->_left);
		if (diff != cur->_bf) {
			std::cout << cur->_kv.first << "平衡因子异常" << std::endl;
			return false;
		}
		return (abs(diff) < 2) && \
			_IsBalance(cur->_left) && _IsBalance(cur->_right);
	}
	int _Height(Node* cur) {
		if (cur == nullptr) {
			return 0;
		}
		return std::max(_Height(cur->_left), _Height(cur->_right)) + 1;
	}
	void _Inorder(Node* cur) {
		std::stack<Node*> st;
		while (cur || !st.empty()) {
			while (cur) {
				st.push(cur);
				cur = cur->_left;
			}
			cur = st.top();
			std::cout << cur->_kv.second << " ";
			st.pop();
			cur = cur->_right;
		}
		std::cout << std::endl;
	}
	//时间复杂度O(1),且更新因子最多走高度次
	void RotateL(Node* parent) {
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* pParent = parent->_parent;
		subR->_left = parent;
		if (parent == _root) {
			_root = subR;
		}
		else {
			if (pParent->_left == parent) {
				pParent->_left = subR;
			}
			else {
				pParent->_right = subR;
			}
		}
		subR->_parent = pParent;
		parent->_parent = subR;
		parent->_right = subRL;
		if (subRL) {
			subRL->_parent = parent;
		}
		subR->_bf = parent->_bf = 0;
	}

3. 验证用例

void TestAVLTree1() {
	//int a[] = { 16,3,7,11,9,26,18,14,15 };
	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	AVLTree<int, int> t1;
	for (auto e : a) {
		t1.Insert(std::make_pair(e, e));
	}
	t1.Inorder();
	std::cout << t1.IsBalance() << "\n";
}
void TestAVLTree2() {
	size_t N = 10000;
	srand((unsigned int)time(nullptr));
	AVLTree<int, size_t> t1;
	for (size_t i = 0; i < N; ++i) {
		int x = rand();
		t1.Insert(std::make_pair(x, i));
	}
	std::cout << t1.IsBalance() << "\n";
}

6. AVL树的删除

        因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不 错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

具体实现学生们可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

7. AVL树的性能

AVL树是一棵高度平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值