17、图像标签与癌症转移检测的深度学习探索

图像标签与癌症转移检测的深度学习探索

1. 图像标签的深度学习方法

1.1 向量空间与标签查找

在向量空间中,我们尝试找到向量 E 以增加值 D,这意味着两个向量更相似。给定一组标签 Ti,我们可以利用余弦距离(公式 6)找到一组最相似的标签 Wi。
[
{Wi} = similar(Ti)
]

1.2 实验分析

  • 数据集 :使用 MIRFLICKR - 25000 数据集,包含 25000 张图像及其对应标签和真实标签,有 24 个真实类别和 1386 个标签,标签存在语义重叠。
  • 训练过程 :神经网络使用 20000 张图像数据训练 15 个周期,训练集和验证集比例为 80:20,训练后在剩余 5000 张图像上测试。

1.3 实验结果

  • 平均精度均值(mAP)比较
    | MODEL | mAP SCORE |
    | — | — |
    | BoW + KNN | 0.34 |
    | BoW + Tagprop | 0.33 |
    | Bow + TagVoting | 0.34 |
    | CNN + KNN | 0.63 |
    | CNN + TagProp | 0.65 |
    | TaggerNet | 0.72 |

从表格可以看出,TaggerNet 的 mAP 得分最高,表现优于其他模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值