图像标签与癌症转移检测的深度学习探索
1. 图像标签的深度学习方法
1.1 向量空间与标签查找
 在向量空间中,我们尝试找到向量 E 以增加值 D,这意味着两个向量更相似。给定一组标签 Ti,我们可以利用余弦距离(公式 6)找到一组最相似的标签 Wi。 
 [ 
 {Wi} = similar(Ti) 
 ] 
1.2 实验分析
- 数据集 :使用 MIRFLICKR - 25000 数据集,包含 25000 张图像及其对应标签和真实标签,有 24 个真实类别和 1386 个标签,标签存在语义重叠。
- 训练过程 :神经网络使用 20000 张图像数据训练 15 个周期,训练集和验证集比例为 80:20,训练后在剩余 5000 张图像上测试。
1.3 实验结果
-   平均精度均值(mAP)比较  : 
 | MODEL | mAP SCORE |
 | — | — |
 | BoW + KNN | 0.34 |
 | BoW + Tagprop | 0.33 |
 | Bow + TagVoting | 0.34 |
 | CNN + KNN | 0.63 |
 | CNN + TagProp | 0.65 |
 | TaggerNet | 0.72 |
从表格可以看出,TaggerNet 的 mAP 得分最高,表现优于其他模型。
 
                       
                             
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   17
					17
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            